Skip to main content

The Japan Quake and the Kashiwazaki-Kariwa Nuclear Plant

By now, most of you have already heard about the earthquake that struck parts of Japan overnight, an event that killed 8 and injured 900. As the result of the quake, the Kashiwazaki-Kariwa Nuclear Plant experienced two separate incidents:
Four of the seven nuclear reactors at Tokyo Electric Power Co.'s Kashiwazaki-Kariwa nuclear power station, the world's largest nuclear power plant in terms of power output capacity, were operating or set to commence operation at the time of the earthquake and automatically shut down after sensing the strong quake.

But an electric transformer outside one of the reactors caught fire shortly after the quake. The fire was extinguished about two hours later. No radioactive leak has been detected.

It was the first fire at a nuclear plant to be caused by a quake and the Ministry of Economy, Trade and Industry is checking the cause, METI officials said.

TEPCO announced later in the day that water containing radioactive material leaked from one of three reactors that had suspended operations for regular checks and some of the water was released into the nearby Sea of Japan.

But the level of the radioactive material in the water was below the legal standard, the utility company said.
In response, NEI's Steve Kerekes passed along some notes to keep in mind as press reports continue to come out of Japan:

U.S. nuclear power plants are built with a defense-in-depth philosophy that uses multiple safety barriers and redundant, physically separated safety systems to assure that public health and safety is assured even in severe circumstances like hurricanes and earthquakes.

  • The three main protective barriers are the zirconium cladding on the ceramic pellets of uranium fuel; the reactor vessel and cooling system; and the containment structure that surrounds the reactor and other major components.
  • Examples of the robust design elements include: several feet of steel reinforced-concrete in the containment structures; stainless steel liners within the containment structure and within the many feet of concrete in the used fuel pools, below-grade foundations for the reactor core structure; and reinforced pipe and tank supports.

All U.S. nuclear plants are designed to withstand earthquakes of a magnitude that is equivalent to or greater than the largest known earthquake for region where it is being built. “Withstand” means that you retain the ability to safety shut down the plant without a release of radiation.

  • Given the seismic history in California, for example, plants in that state are built to withstand a higher level of seismic activity than plants in many other parts of the country. They are designed with events like that which occurred in Japan in mind.

Initial press reports out of Japan suggest that the level of radioactivity in the water that leaked from unit 6 of the power station is very small – not only at a level that would not jeopardize public health and safety but even below reportable regulatory limits.

  • We do not have details regarding the radionuclides involved in the leak, nor on the manner in which the leak occurred. We have been told by Tokyo Electric officials that the release of the water containing radioactive isotopes has been stopped.
More details are they become available. For more on the "defense in depth" philosophy that comes into play with nuclear plant safety, click here.

Comments

Anonymous said…
"All U.S. nuclear plants are designed to withstand earthquakes of a magnitude that is equivalent to or greater than the largest known earthquake for region where it is being built."

I believe that's the case with Japanese NPPs as well, including KK. However, the July 16 quake was larger than the design basis seismic event they'd anticipated.
Fred D. said…
The LA Times and other outlets are reporting some other issues... pipes dislodged, low-level waste barrels tipped over, a release into the atmosphere.

Are these indicators of design flaws, especially for what seems to be an earthquake-prone area? I will be very interested in seeing after-action or lessons learned reports.
First, the quake in Japan was higher in magnitude than the DB specks by which these reactors were designed and built. There is a very good chance that said quake has made all seven of these reactors unsound from and engineering stand point.

Secondly, NEI can try to mitigate reality all they want...this quake has shown nuclear reactors to be unsafe, and with each passing hour, the number of SIGNIFICANT issues at the world's largest reactor site continue to grow.

Smart money...dump your nuclear holdings before the bottom falls out of the market. If I had Exelon or Entergy stock right now (too name two) I'd be more than nervous.
David Bradish said…
Actually no. The best thing to do right now is to see what the total damage is. From the looks of things, it looks like the significant areas of the plants (i.e. the reactors) performed exactly how they were supposed to with no damage done to them.

You're forgetting these plants are designed for earthquakes. Give it a week and we'll see where we are at. You can't start jumping to conclusions. Bet you several of the reactors will begin restarting within two weeks.
Tokyo Electric Power has already admitted that the reactors were not built to withstand and earthquake of the magnitude experienced. The reactors themselves were built on basically very elaborate shock absorbers...this according to a welder who used to work for Underwater Welding of Essex, Ct. who actually did work on the reactors involved. Without significantly tests and examinantion, the long term viability of these shock absorbers cannot be ascertained, and it is murder to restart these seven reactors until said testing is completed.
Josh said…
Long name person, I think you have a problem with your definition of "unsafe".

I've posted a more detailed response on my blog.
Luke said…
Come off it.

How much radioactivity was actually released, and what maximum dose could this have resulted in to any member of the public?

What are the actual risks that the public has been exposed to as a result of this earthquake affecting the nuclear plant?
KenG said…
Can anyone confirm that these units actually have seismic isolation as stated above? I've extensively studied these projects and never seen this. I have a 2001 paper from Hitachi (K-6/K-7 designer) stating that they are studying seismic isolation for future units based on K-7. Perhaps the post above confuses snubbers with supports. Snubbers are easily inspected and requalified.
tgf said…
So what leaked? Heavy water? Cs-137? Sr-90? I-131? I haven't been able to find that info anywhere.
Luke said…
The water that leaked ultimately came from a spent fuel pool.

The 2 microcuries (just to re-iterate) of radioactivity in the water spill from the pool was probably a cocktail of reasonably long-lived fission products in trace amounts from the spent fuel rods.

Probably not I-131, because it's so short lived, it isn't significant in stored spent fuel, except where it's straight out of a recently operating reactor.

Fission products like Cs-137 might be a pretty representative guess.

Popular posts from this blog

Sneak Peek

There's an invisible force powering and propelling our way of life.
It's all around us. You can't feel it. Smell it. Or taste it.
But it's there all the same. And if you look close enough, you can see all the amazing and wondrous things it does.
It not only powers our cities and towns.
And all the high-tech things we love.
It gives us the power to invent.
To explore.
To discover.
To create advanced technologies.
This invisible force creates jobs out of thin air.
It adds billions to our economy.
It's on even when we're not.
And stays on no matter what Mother Nature throws at it.
This invisible force takes us to the outer reaches of outer space.
And to the very depths of our oceans.
It brings us together. And it makes us better.
And most importantly, it has the power to do all this in our lifetime while barely leaving a trace.
Some people might say it's kind of unbelievable.
They wonder, what is this new power that does all these extraordinary things?

A Design Team Pictures the Future of Nuclear Energy

For more than 100 years, the shape and location of human settlements has been defined in large part by energy and water. Cities grew up near natural resources like hydropower, and near water for agricultural, industrial and household use.

So what would the world look like with a new generation of small nuclear reactors that could provide abundant, clean energy for electricity, water pumping and desalination and industrial processes?

Hard to say with precision, but Third Way, the non-partisan think tank, asked the design team at the Washington, D.C. office of Gensler & Associates, an architecture and interior design firm that specializes in sustainable projects like a complex that houses the NFL’s Dallas Cowboys. The talented designers saw a blooming desert and a cozy arctic village, an old urban mill re-purposed as an energy producer, a data center that integrates solar panels on its sprawling flat roofs, a naval base and a humming transit hub.

In the converted mill, high temperat…

Seeing the Light on Nuclear Energy

If you think that there is plenty of electricity, that the air is clean enough and that nuclear power is a just one among many options for meeting human needs, then you are probably over-focused on the United States or Western Europe. Even then, you’d be wrong.

That’s the idea at the heart of a new book, “Seeing the Light: The Case for Nuclear Power in the 21st Century,” by Scott L. Montgomery, a geoscientist and energy expert, and Thomas Graham Jr., a retired ambassador and arms control expert.


Billions of people live in energy poverty, they write, and even those who don’t, those who live in places where there is always an electric outlet or a light switch handy, we need to unmake the last 200 years of energy history, and move to non-carbon sources. Energy is integral to our lives but the authors cite a World Health Organization estimate that more than 6.5 million people die each year from air pollution.  In addition, they say, the global climate is heading for ruinous instability. E…