Skip to main content

The Japan Quake and the Kashiwazaki-Kariwa Nuclear Plant

By now, most of you have already heard about the earthquake that struck parts of Japan overnight, an event that killed 8 and injured 900. As the result of the quake, the Kashiwazaki-Kariwa Nuclear Plant experienced two separate incidents:
Four of the seven nuclear reactors at Tokyo Electric Power Co.'s Kashiwazaki-Kariwa nuclear power station, the world's largest nuclear power plant in terms of power output capacity, were operating or set to commence operation at the time of the earthquake and automatically shut down after sensing the strong quake.

But an electric transformer outside one of the reactors caught fire shortly after the quake. The fire was extinguished about two hours later. No radioactive leak has been detected.

It was the first fire at a nuclear plant to be caused by a quake and the Ministry of Economy, Trade and Industry is checking the cause, METI officials said.

TEPCO announced later in the day that water containing radioactive material leaked from one of three reactors that had suspended operations for regular checks and some of the water was released into the nearby Sea of Japan.

But the level of the radioactive material in the water was below the legal standard, the utility company said.
In response, NEI's Steve Kerekes passed along some notes to keep in mind as press reports continue to come out of Japan:

U.S. nuclear power plants are built with a defense-in-depth philosophy that uses multiple safety barriers and redundant, physically separated safety systems to assure that public health and safety is assured even in severe circumstances like hurricanes and earthquakes.

  • The three main protective barriers are the zirconium cladding on the ceramic pellets of uranium fuel; the reactor vessel and cooling system; and the containment structure that surrounds the reactor and other major components.
  • Examples of the robust design elements include: several feet of steel reinforced-concrete in the containment structures; stainless steel liners within the containment structure and within the many feet of concrete in the used fuel pools, below-grade foundations for the reactor core structure; and reinforced pipe and tank supports.

All U.S. nuclear plants are designed to withstand earthquakes of a magnitude that is equivalent to or greater than the largest known earthquake for region where it is being built. “Withstand” means that you retain the ability to safety shut down the plant without a release of radiation.

  • Given the seismic history in California, for example, plants in that state are built to withstand a higher level of seismic activity than plants in many other parts of the country. They are designed with events like that which occurred in Japan in mind.

Initial press reports out of Japan suggest that the level of radioactivity in the water that leaked from unit 6 of the power station is very small – not only at a level that would not jeopardize public health and safety but even below reportable regulatory limits.

  • We do not have details regarding the radionuclides involved in the leak, nor on the manner in which the leak occurred. We have been told by Tokyo Electric officials that the release of the water containing radioactive isotopes has been stopped.
More details are they become available. For more on the "defense in depth" philosophy that comes into play with nuclear plant safety, click here.

Comments

Anonymous said…
"All U.S. nuclear plants are designed to withstand earthquakes of a magnitude that is equivalent to or greater than the largest known earthquake for region where it is being built."

I believe that's the case with Japanese NPPs as well, including KK. However, the July 16 quake was larger than the design basis seismic event they'd anticipated.
Anonymous said…
The LA Times and other outlets are reporting some other issues... pipes dislodged, low-level waste barrels tipped over, a release into the atmosphere.

Are these indicators of design flaws, especially for what seems to be an earthquake-prone area? I will be very interested in seeing after-action or lessons learned reports.
First, the quake in Japan was higher in magnitude than the DB specks by which these reactors were designed and built. There is a very good chance that said quake has made all seven of these reactors unsound from and engineering stand point.

Secondly, NEI can try to mitigate reality all they want...this quake has shown nuclear reactors to be unsafe, and with each passing hour, the number of SIGNIFICANT issues at the world's largest reactor site continue to grow.

Smart money...dump your nuclear holdings before the bottom falls out of the market. If I had Exelon or Entergy stock right now (too name two) I'd be more than nervous.
David Bradish said…
Actually no. The best thing to do right now is to see what the total damage is. From the looks of things, it looks like the significant areas of the plants (i.e. the reactors) performed exactly how they were supposed to with no damage done to them.

You're forgetting these plants are designed for earthquakes. Give it a week and we'll see where we are at. You can't start jumping to conclusions. Bet you several of the reactors will begin restarting within two weeks.
Tokyo Electric Power has already admitted that the reactors were not built to withstand and earthquake of the magnitude experienced. The reactors themselves were built on basically very elaborate shock absorbers...this according to a welder who used to work for Underwater Welding of Essex, Ct. who actually did work on the reactors involved. Without significantly tests and examinantion, the long term viability of these shock absorbers cannot be ascertained, and it is murder to restart these seven reactors until said testing is completed.
Anonymous said…
Long name person, I think you have a problem with your definition of "unsafe".

I've posted a more detailed response on my blog.
Luke said…
Come off it.

How much radioactivity was actually released, and what maximum dose could this have resulted in to any member of the public?

What are the actual risks that the public has been exposed to as a result of this earthquake affecting the nuclear plant?
Anonymous said…
Can anyone confirm that these units actually have seismic isolation as stated above? I've extensively studied these projects and never seen this. I have a 2001 paper from Hitachi (K-6/K-7 designer) stating that they are studying seismic isolation for future units based on K-7. Perhaps the post above confuses snubbers with supports. Snubbers are easily inspected and requalified.
brb said…
So what leaked? Heavy water? Cs-137? Sr-90? I-131? I haven't been able to find that info anywhere.
Luke said…
The water that leaked ultimately came from a spent fuel pool.

The 2 microcuries (just to re-iterate) of radioactivity in the water spill from the pool was probably a cocktail of reasonably long-lived fission products in trace amounts from the spent fuel rods.

Probably not I-131, because it's so short lived, it isn't significant in stored spent fuel, except where it's straight out of a recently operating reactor.

Fission products like Cs-137 might be a pretty representative guess.

Popular posts from this blog

Fluor Invests in NuScale

You know, it’s kind of sad that no one is willing to invest in nuclear energy anymore. Wait, what? NuScale Power celebrated the news of its company-saving $30 million investment from Fluor Corp. Thursday morning with a press conference in Washington, D.C. Fluor is a design, engineering and construction company involved with some 20 plants in the 70s and 80s, but it has not held interest in a nuclear energy company until now. Fluor, which has deep roots in the nuclear industry, is betting big on small-scale nuclear energy with its NuScale investment. "It's become a serious contender in the last decade or so," John Hopkins, [Fluor’s group president in charge of new ventures], said. And that brings us to NuScale, which had run into some dark days – maybe not as dark as, say, Solyndra, but dire enough : Earlier this year, the Securities Exchange Commission filed an action against NuScale's lead investor, The Michael Kenwood Group. The firm "misap

An Ohio School Board Is Working to Save Nuclear Plants

Ohio faces a decision soon about its two nuclear reactors, Davis-Besse and Perry, and on Wednesday, neighbors of one of those plants issued a cry for help. The reactors’ problem is that the price of electricity they sell on the high-voltage grid is depressed, mostly because of a surplus of natural gas. And the reactors do not get any revenue for the other benefits they provide. Some of those benefits are regional – emissions-free electricity, reliability with months of fuel on-site, and diversity in case of problems or price spikes with gas or coal, state and federal payroll taxes, and national economic stimulus as the plants buy fuel, supplies and services. Some of the benefits are highly localized, including employment and property taxes. One locality is already feeling the pinch: Oak Harbor on Lake Erie, home to Davis-Besse. The town has a middle school in a building that is 106 years old, and an elementary school from the 1950s, and on May 2 was scheduled to have a referendu

Wednesday Update

From NEI’s Japan micro-site: NRC, Industry Concur on Many Post-Fukushima Actions Industry/Regulatory/Political Issues • There is a “great deal of alignment” between the U.S. Nuclear Regulatory Commission and the industry on initial steps to take at America’s nuclear energy facilities in response to the nuclear accident in Japan, Charles Pardee, the chief operating officer of Exelon Generation Co., said at an agency briefing today. The briefing gave stakeholders an opportunity to discuss staff recommendations for near-term actions the agency may take at U.S. facilities. PowerPoint slides from the meeting are on the NRC website. • The International Atomic Energy Agency board has approved a plan that calls for inspectors to evaluate reactor safety at nuclear energy facilities every three years. Governments may opt out of having their country’s facilities inspected. Also approved were plans to maintain a rapid response team of experts ready to assist facility operators recoverin