Skip to main content

Atmea Joint Venture to Develop New Reactor

World Nuclear News recently reported a significant announcement by AREVA and Mitsubishi concerning their joint venture:

Areva of France and Mitsubishi Heavy Industries of Japan announced that their newly-created joint venture will be known as Atmea. The joint venture will develop an "advanced Generation-III" nuclear power reactor, the Atmea 1.

... the Atmea joint venture will develop, market, license and sell an 1100 MWe pressurized water reactor (PWR), which will combine technologies of both companies. The reactor would be marketed at emerging countries wishing to begin nuclear power programs, as well as established markets such as the USA and Europe.
I found this announcement fascinating for three reasons. First, until now, the strategy of reactor suppliers has been to devote all available resources to developing and licensing a single flagship design. The Atmea joint venture indicates that the market for new reactors has matured to the point that vendors now see a need to provide multiple designs to meet the needs of different customers.

Second, the size of the Atmea 1 indicates that it is intended to for head-to-head competition with Westinghouse's AP-1000. That means that Atmea sees a market that is big enough for two suppliers, or perhaps that the needs of utilities have evolved enough that a new design for a medium-sized reactor is needed.

Third, design certification for the Atmea 1 will come years after the certification of the EPR, AP-1000, ABWR, and ESBWR. That suggests that there is significant interest by utilities in a second wave of new plants, beyond the early site permits we have heard about to date.

It will be interesting to see how the Atmea 1 stacks up against the AP-1000 -- not only in features, but eventually in market share as well.

Comments

D. Walters said…
It will be interesting indeed, to see what the stated price per KW will be. Westinghouse is arguing down to $1200/KW installed. We'll see if the generally higher priced European reactors can meet this.

David Walters
Rod Adams said…
What I found most interesting in the announcement was the fact that Areva and Mitsubishi think that a facility that can produce enough electricity for about a million customers is a "mid-sized" unit.
Anonymous said…
When Toshiba took over Westinghouse, Westinghouse had to cut its ties with MHI. In an effort to get a portion of the US market, MHI has to compete with rather than cooperate with Westinghouse. Since most serious PWR buyers are going with the AP1000, and since Areva does not have an 1100 MW passive offering (or a 1600 MW passive offering - EPR is not "passive"), MHI and Areva can split the development costs of a competing passive reactor.
D. Walters said…
True. On the other hand, Westinghouse doesn't want to touch, it seems, the larger-size 1500+ market, either. It seems that the 1,100 size is becoming the standard. I think this has more to do however, with flexibility and grid conditions. Having a 1100MW unit is easier on the system than having a 1700MW unit trip.

I was on the board the day PG&E decide to double-trip Diablo Canyon and made 2400 MWs go to 0 MWs in a second. Our generator got 'bumbed' (300 miles to the north) and we go all sorts of vibration alarms.

I believe there is going to be a market for smaller and smaller units as time goes by.

David
Anonymous said…
The main issue that Areva faces is the fact that their evolutionary EPR design has requires a substantially larger amount of construction material and equipment than the new passive LWR designs offered by Westinghouse and GE, so Areva will have a difficult time competing with the EPR. The figures for the new Areva/Mitsubishi 1100 MW reactor show only a single containment shell, so it looks like one of the major goals may be to reduce costs relative to the EPR.
Anonymous said…
The reason that the AP-1000 is only 1150 MW is because their decay heat removal occurs through the containment shell, and this is the maximum that they can get without increasing the building size to be much larger. The GE ESBWR has no constraint on size (they just add a few more PCCS modules), which is why the ESBWR is at 1550 MW and is likely less expensive than the AP 1000.

Popular posts from this blog

Fluor Invests in NuScale

You know, it’s kind of sad that no one is willing to invest in nuclear energy anymore. Wait, what? NuScale Power celebrated the news of its company-saving $30 million investment from Fluor Corp. Thursday morning with a press conference in Washington, D.C. Fluor is a design, engineering and construction company involved with some 20 plants in the 70s and 80s, but it has not held interest in a nuclear energy company until now. Fluor, which has deep roots in the nuclear industry, is betting big on small-scale nuclear energy with its NuScale investment. "It's become a serious contender in the last decade or so," John Hopkins, [Fluor’s group president in charge of new ventures], said. And that brings us to NuScale, which had run into some dark days – maybe not as dark as, say, Solyndra, but dire enough : Earlier this year, the Securities Exchange Commission filed an action against NuScale's lead investor, The Michael Kenwood Group. The firm "misap

An Ohio School Board Is Working to Save Nuclear Plants

Ohio faces a decision soon about its two nuclear reactors, Davis-Besse and Perry, and on Wednesday, neighbors of one of those plants issued a cry for help. The reactors’ problem is that the price of electricity they sell on the high-voltage grid is depressed, mostly because of a surplus of natural gas. And the reactors do not get any revenue for the other benefits they provide. Some of those benefits are regional – emissions-free electricity, reliability with months of fuel on-site, and diversity in case of problems or price spikes with gas or coal, state and federal payroll taxes, and national economic stimulus as the plants buy fuel, supplies and services. Some of the benefits are highly localized, including employment and property taxes. One locality is already feeling the pinch: Oak Harbor on Lake Erie, home to Davis-Besse. The town has a middle school in a building that is 106 years old, and an elementary school from the 1950s, and on May 2 was scheduled to have a referendu

Wednesday Update

From NEI’s Japan micro-site: NRC, Industry Concur on Many Post-Fukushima Actions Industry/Regulatory/Political Issues • There is a “great deal of alignment” between the U.S. Nuclear Regulatory Commission and the industry on initial steps to take at America’s nuclear energy facilities in response to the nuclear accident in Japan, Charles Pardee, the chief operating officer of Exelon Generation Co., said at an agency briefing today. The briefing gave stakeholders an opportunity to discuss staff recommendations for near-term actions the agency may take at U.S. facilities. PowerPoint slides from the meeting are on the NRC website. • The International Atomic Energy Agency board has approved a plan that calls for inspectors to evaluate reactor safety at nuclear energy facilities every three years. Governments may opt out of having their country’s facilities inspected. Also approved were plans to maintain a rapid response team of experts ready to assist facility operators recoverin