Skip to main content

"What's Left But Nuclear Power?"

From The Arbiter, an independent student newspaper at Boise State University:

There simply aren’t that many rivers left to dam up. Solar and wind power are prohibitively expensive, consume large swaths of landscape, and lack the reliability needed to provide energy base load – that critical amount of energy needed to power the core of civilization. America can’t simply come to a halt on cloudy or windless days. What’s left but nuclear power, which safely generates 35 percent of Europe’s electricity from 196 nuclear plants across the continent?


gunter said…
What tripe!

Its nuclear power that is prohibitively expensive. More wind power capacity has been ordered than nuclear power. That's because the cost of wind and solar power is dramatically falling. Nukes are and will remain increasingly expensive.

Somebody send Boise the Keystone Group report from 2007.
Alex Brown said…
The problem with your statement,"More wind power capacity has been ordered " should be clear to many who have an understanding of electrical generation and transmission. "capacity" for wind might appear high but there are two main reasons why this is terribly misleading. First off capacity is a rating of POWER, and what people consume is ENERGY, you must multiply the capacity by the "capacity factor" in order to get energy produced. Since nuclear has a capacity factor 3 times that of wind it takes 3 times as much wind capacity to produce the same energy as nuclear. Even worse is the fact that reserve margins as mandated by FERC and others are listed as "net DEPENDABLE generation", wind cannot be listed as such since it is cannot be assured to be dependable and therefore for every unit of wind there has to be an equivalent amount of backup generation in case the wind is not blowing. This means for a 1000MW wind generator (assumed by the operator to be perhaps 300MW average) will require a 300MW gas turbine plant to back it up, however the cost of such plants is never listed in the cost of wind power (neither in increased need for capacitor banks and transmission lines associated with the high variability of wind, but those may be too complicated to get into here). HOWEVER I will agree that even with these costs wind is not as "prohibitively expensive" as the article might suggest, but ONLY in places with considerable wind resources. In places like the US southeast where such resources do not exist wind power is simply not a viable option without greatly increasing the cost of electric power.

In terms of all in costs you are looking at:

coal > nuclear > CC natural gas > Wind > SC natural gas > IGCC with sequestration >> solar.

With a moderate carbon tax this will likely still be the same, with a heavy carbon tax:

nuclear > coal > CC natural gas > Wind > IGCC with sequestration > SC natural gas > solar.

Although keep in mind that no such thing as a large scale "IGCC with sequestration" or solar plant, so its unlikely they could even be built in the scale needed in less than a decade no matter what carbon tax or incentives were offered.
Anonymous said…
Really Gunter? Is that why here in the U.S. nuclear power is 70 times more productive than wind power, and 2000 times more productive than solar power? Even the most ardent supporters of piddle power (e.g., the largest wind power operator in Germany) concede that wind and solar power must be backed up to a very high level, perhaps up to 80%, by conventional sources.

Nuclear power is not "increasingly expensive" and there are innovations on the horizon in enrichment and fuel design that offer advancements and efficiencies that piddle power operators can only dream about. Nuclear power is the breakthrough - the technology that changes the game. Wind and solar are now bit players that were left behind long ago, as people found fossil fuels. As the end of the fossil fuel age is in sight, it is nuclear power that will replace fossil fuel, not the anachronisms of wind and solar power.
D. Kosloff said…
Sweden knows. Nothing. The vaunted 30-year "phase out" has failed.
KenG said…
Gunter's attempts to twist the facts to meet his vision are becoming almost painful.

One could summarize the current wind status as a technology that, in spite of a century of development, is facing accelerating costs and a two year backlog of equipment supply. And it is still struggling to provide 1% of the US electrical demand. And, even with massive subsidies, it can't economically compete with nuclear and coal in most parts of the country. And every wind farm that is proposed runs up against citizen protests over the impact on the view.

Solar is more expensive by factors of two to ten.

In comparison, how is nuclear a poorer choice?
ondrjech said…
Gunter, prices of solar have been RISING, not falling, and certainly not dramatically falling, since several years already.

Please educate yourself.
Anonymous said…
Wind? Don't make me laugh. Even if wind could approach the capacity factor of nukes, you're talking about a thousand large wind turbines to equal the output of a single nuclear plant. And since wind capacity factor averages maybe one-third that of nuclear, you're talking about over 3,000 spread out over hundreds of square miles of territory, each with it's own transmission infrastructure, control systems, and maintenance. It is a source of capacity that has essentially zero dispatchability, which makes it very undersirable in a grid-based system. It's suscepibility to sudden variations in output depending on environmental conditions means you have to keep reserve capacity ready and spinning to step in quickly should your wind capacity go away, or risk instabilities that could take down your system. When you factor in the cost of things to cover the inevitable intermittancy of a wind power source, the economics become much less attractive.

The most optmistic estimates I've seen indicate that we might get maybe 20% of our capacity requirements from wind sources, if fully exploited. So where do you go for the other 80%? You're building up an energy source that if fully developed will struggle to be at best a minor player in our energy picture. Talk about tripe.

Popular posts from this blog

A Billion Miles Under Nuclear Energy (Updated)

And the winner is…Cassini-Huygens, in triple overtime.

The spaceship conceived in 1982 and launched fifteen years later, will crash into Saturn on September 15, after a mission of 19 years and 355 days, powered by the audacity and technical prowess of scientists and engineers from 17 different countries, and 72 pounds of plutonium.

The mission was so successful that it was extended three times; it was intended to last only until 2008.

Since April, the ship has been continuing to orbit Saturn, swinging through the 1,500-mile gap between the planet and its rings, an area not previously explored. This is a good maneuver for a spaceship nearing the end of its mission, since colliding with a rock could end things early.

Cassini will dive a little deeper and plunge toward Saturn’s surface, where it will transmit data until it burns up in the planet’s atmosphere. The radio signal will arrive here early Friday morning, Eastern time. A NASA video explains.

In the years since Cassini has launc…

Missing the Point about Pennsylvania’s Nuclear Plants

A group that includes oil and gas companies in Pennsylvania released a study on Monday that argues that twenty years ago, planners underestimated the value of nuclear plants in the electricity market. According to the group, that means the state should now let the plants close.


The question confronting the state now isn’t what the companies that owned the reactors at the time of de-regulation got or didn’t get. It’s not a question of whether they were profitable in the '80s, '90s and '00s. It’s about now. Business works by looking at the present and making projections about the future.

Is losing the nuclear plants what’s best for the state going forward?

Pennsylvania needs clean air. It needs jobs. And it needs protection against over-reliance on a single fuel source.

What the reactors need is recognition of all the value they provide. The electricity market is depressed, and if electricity is treated as a simple commodity, with no regard for its benefit to clean air o…

Why Nuclear Plant Closures Are a Crisis for Small Town USA

Nuclear plants occupy an unusual spot in the towns where they operate: integral but so much in the background that they may seem almost invisible. But when they close, it can be like the earth shifting underfoot., the Gannett newspaper that covers the Lower Hudson Valley in New York, took a look around at the experience of towns where reactors have closed, because the Indian Point reactors in Buchanan are scheduled to be shut down under an agreement with Gov. Mario Cuomo.

From sea to shining sea, it was dismal. It wasn’t just the plant employees who were hurt. The losses of hundreds of jobs, tens of millions of dollars in payrolls and millions in property taxes depressed whole towns and surrounding areas. For example:

Vernon, Vermont, home to Vermont Yankee for more than 40 years, had to cut its municipal budget in half. The town closed its police department and let the county take over; the youth sports teams lost their volunteer coaches, and Vernon Elementary School lost th…