Skip to main content

Wind a Boon(e?) for Gas

The Wall Street Journal's Environmental Capital blog today points to a WSJ op-ed by European writer Edgar Gärtner on the link between wind and gas. He cites European experience showing that increasing deployment of wind turbines in Spain and Germany coincides with greater dependence on gas, needed to support wind generation that can drop off at any time. He suggests that this may be why gas producers are eagerly promoting wind development - it is an effective way to promote demand for natural gas and the value of natural gas holdings. Gärtner concludes:
Wind power is clearly not reducing the dependence on imported fuel, contrary to the frequent claims of its proponents. In fact the experience from Germany and Spain shows that it is increasing the dependence of imported natural gas. And that's not energy security.

Comments

Anonymous said…
Anyone with any knowledge of how electricity supply is managed will know this is true. Wind capacity has essentially zero dispatchability. It is a chaotic, intermittent energy source. You're going to need quick-start backup capacity to fill the (many) gaps that occur when the wind isn't blowing at optimal speed, and right now that means NG-fueled generation. Those who advocate large-scale deployment of wind-based capacity are really advocating increased use of natural gas as a source of electricity, and that is a recipe for disaster.
Arvid said…
One one hand you will need natural gas (or hydro...) CAPACITY to deal with intermittency, but the total amount of gas consumed is bound to go down compared to when not having wind power.
Joffan said…
Let's take the easy case, arvid, where there's no hydro capacity. Then every time we build more wind power, we commit to having rapid-response power, which will be gas, to back it up. That's gas that's entrenched in the system - we can't get rid of it without also getting rid of the wind turbines. So although we don't burn gas when the wind blows, we're committing to burn it the other 75% of the time.

For most countries, hydro is limited. Once we have installed wind that matches the reservoir hydro capacity, additional wind will find itself entrenching gas usage in the same way.

For countries that have new gas generation plant, I'd say that using some wind to reduce gas usage during the phase-out will be good - that infrastructure needs to show some return. But after that, 20, 30 years? It would need a miracle of CO2 reclamation technology to make it worthwhile to keep the gas+wind system.
Anonymous said…
Arvid,

It is not at all clear that gas use will go down, for the reasons Joffan gives.

A significant amount of highly variable wind generation capacity all but requires a similar amount of gas (not coal or nuclear) capacity to be present. Given that the gas plants will be operating ~2/3 of the time, it means that the annual gas generation (kW-hrs) will have to be almost twice the annual wind generation. Thus, for wind to provide 20%, gas would have to be almost 40%, i.e., twice the fraction we have today.

We had a discussion about this over at EnergyPulse, in the comment section for a given article. Check it out at:

http://www.energypulse.net/centers/article/article_display.cfm?a_id=1790

Jim Hopf
Arvid said…
No matter what you'll need either gas or hydro to take care of your demand peaks.

Why not add wind to the system? When the wind is blowing that'll reduce the need for gas or hydro and when it's not you burn as much gas as you usually do.

The key to understanding the usefullness of wind is to see it as an intermittent gas saver in gas plants and as a way of saving water in the dams for later more profitable use.
Rod Adams said…
It is a logical fallacy to assume that it is not possible to provide rapidly varying power with sources other than gas. Both coal and uranium have long and proven histories of use in systems that respond rapidly to changes in power demand.

Coal's history in rapid response systems like ship propulsion units, however, is a bit ancient and requires either conveyors that can be speeded up or slowed down along with smaller units than are typically built. Of course, we could go all the way back to the days of stokers, but I think they would be hard to find these days.

For nuclear fission, however, there are a number of very responsive units in operation today on aircraft carriers, submarines and ice breakers. Fission reactors can change the heat they produce very rapidly and if they are connected to an appropriately designed steam plant or gas turbine, the power output from those units can also be varied rapidly.

On the flip side, I see no real reason, outside of the fact that some people seem to like enormous structures of often useless machinery, to integrate wind in with a future zero emission nuclear dominated grid, but that is a separate issue.
Joffan said…
Arvid, demand peaks are indeed a tricky supply problem; but the logical outcome of using wind to meet some of this requirement is that the wind is NOT USED AT ALL outside of those peaks. This will lead to horrendously low capacity usage of wind generation equipment. Only when hydro and gas are meeting more than just peaks can wind really be used to substitute energy for these systems.

The systemic alternative to having additional responsive generation capacity for your demand peaks is to have an element of very responsive demand instead (which will of course be charged less for the highly intermittent electricity). This could allow us to chop the rapid demand changes down to something that can be handled more efficiently with load-followers. Enough of this, and wind could be used again - but would command a much reduced price.

Popular posts from this blog

Making Clouds for a Living

Donell Banks works at Southern Nuclear’s Plant Vogtle units 3 and 4 as a shift supervisor in Operations, but is in the process of transitioning to his newly appointed role as the daily work controls manager. He has been in the nuclear energy industry for about 11 years.

I love what I do because I have the unique opportunity to help shape the direction and influence the culture for the future of nuclear power in the United States. Every single day presents a new challenge, but I wouldn't have it any other way. As a shift supervisor, I was primarily responsible for managing the development of procedures and programs to support operation of the first new nuclear units in the United States in more than 30 years. As the daily work controls manager, I will be responsible for oversight of the execution and scheduling of daily work to ensure organizational readiness to operate the new units.

I envision a nuclear energy industry that leverages the technology of today to improve efficiency…

Nuclear: Energy for All Political Seasons

The electoral college will soon confirm a surprise election result, Donald Trump. However, in the electricity world, there are fewer surprises – physics and economics will continue to apply, and Republicans and Democrats are going to find a lot to like about nuclear energy over the next four years.

In a Trump administration, the carbon conversation is going to be less prominent. But the nuclear value proposition is still there. We bring steady jobs to rural areas, including in the Rust Belt, which put Donald Trump in office. Nuclear plants keep the surrounding communities vibrant.

We hold down electricity costs for the whole economy. We provide energy diversity, reducing the risk of disruption. We are a critical part of America’s industrial infrastructure, and the importance of infrastructure is something that President-Elect Trump has stressed.

One of our infrastructure challenges is natural gas pipelines, which have gotten more congested as extremely low gas prices have pulled m…

Innovation Fuels the Nuclear Legacy: Southern Nuclear Employees Share Their Stories

Blake Bolt and Sharimar Colon are excited about nuclear energy. Each works at Southern Nuclear Co. and sees firsthand how their ingenuity powers the nation’s largest supply of clean energy. For Powered by Our People, they shared their stories of advocacy, innovation in the workplace and efforts to promote efficiency. Their passion for nuclear energy casts a bright future for the industry.

Blake Bolt has worked in the nuclear industry for six years and is currently the work week manager at Hatch Nuclear Plant in Georgia. He takes pride in an industry he might one day pass on to his children.

What is your job and why do you enjoy doing it?
As a Work Week Manager at Plant Hatch, my primary responsibility is to ensure nuclear safety and manage the risk associated with work by planning, scheduling, preparing and executing work to maximize the availability and reliability of station equipment and systems. I love my job because it enables me to work directly with every department on the plant…