Skip to main content

Oxford Physicist - “We should stop running away from radiation”

Over at the BBC, Wade Allison, nuclear and medical physicist at the University of Oxford, helps put radiation in perspective:

More than 10,000 people have died in the Japanese tsunami and the survivors are cold and hungry. But the media concentrate on nuclear radiation from which no-one has died - and is unlikely to.

Nuclear radiation at very high levels is dangerous, but the scale of concern that it evokes is misplaced. Nuclear technology cures countless cancer patients every day - and a radiation dose given for radiotherapy in hospital is no different in principle to a similar dose received in the environment.

People worry about radiation because they cannot feel it. However, nature has a solution - in recent years it has been found that living cells replace and mend themselves in various ways to recover from a dose of radiation.

These clever mechanisms kick in within hours and rarely fail, except when they are overloaded - as at Chernobyl, where most of the emergency workers who received a dose greater than 4,000 mSv over a few hours died within weeks.

However, patients receiving a course of radiotherapy usually get a dose of more than 20,000 mSv to vital healthy tissue close to the treated tumour. This tissue survives only because the treatment is spread over many days giving healthy cells time for repair or replacement.

In this way, many patients get to enjoy further rewarding years of life, even after many vital organs have received the equivalent of more than 20,000 years' dose at the above internationally recommended annual limit …

There’s much more from the professor at the BBC. Be sure to stop by and see what he says about the radiation from Fukushima and if he would accept used fuel buried under his house.

Comments

Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Missing the Point about Pennsylvania’s Nuclear Plants

A group that includes oil and gas companies in Pennsylvania released a study on Monday that argues that twenty years ago, planners underestimated the value of nuclear plants in the electricity market. According to the group, that means the state should now let the plants close.

Huh?

The question confronting the state now isn’t what the companies that owned the reactors at the time of de-regulation got or didn’t get. It’s not a question of whether they were profitable in the '80s, '90s and '00s. It’s about now. Business works by looking at the present and making projections about the future.

Is losing the nuclear plants what’s best for the state going forward?

Pennsylvania needs clean air. It needs jobs. And it needs protection against over-reliance on a single fuel source.


What the reactors need is recognition of all the value they provide. The electricity market is depressed, and if electricity is treated as a simple commodity, with no regard for its benefit to clean air o…

Why America Needs the MOX Facility

If Isaiah had been a nuclear engineer, he’d have loved this project. And the Trump Administration should too, despite the proposal to eliminate it in the FY 2018 budget.

The project is a massive factory near Aiken, S.C., that will take plutonium from the government’s arsenal and turn it into fuel for civilian power reactors. The plutonium, made by the United States during the Cold War in a competition with the Soviet Union, is now surplus, and the United States and the Russian Federation jointly agreed to reduce their stocks, to reduce the chance of its use in weapons. Over two thousand construction workers, technicians and engineers are at work to enable the transformation.

Carrying Isaiah’s “swords into plowshares” vision into the nuclear field did not originate with plutonium. In 1993, the United States and Russia began a 20-year program to take weapons-grade uranium out of the Russian inventory, dilute it to levels appropriate for civilian power plants, and then use it to produce…