Skip to main content

NRC’s Post-Fukushima Review Adds Top Priority

The Nuclear Regulatory Commission this week released a staff paper that prioritizes the recommendations from the near-term post-Fukushima task force report into three tiers—or categories—of importance based on the potential to enhance safety at U.S. nuclear plants. As part of its Tier 1 recommendation, or actions that “should be started without unnecessary delay,” the NRC elevated the importance of implementing spent fuel pool instrumentation, or monitoring equipment, at U.S. nuclear energy facilities.

Why did the NRC elevate this issue? A Bloomberg article explains:

Improved cooling-pool equipment wasn’t listed as a concern warranting immediate NRC action in a Sept. 9 staff memo. Agency staff made it a priority after determining that resources exist to improve monitoring instruments, which aren’t often designed “to remain functional under accident conditions,” according to the report released today.

Moving the recommendation to the first tier does NOT indicate that current spent fuel pools are unsafe. In fact, the NRC has said that current operating nuclear plants “do not pose an imminent risk to public health and safety.” The re-prioritization of the issue likely comes from early lessons the NRC and industry have learned post-Fukushima on the need for remote monitoring of the pools.

In a September 26 letter to the NRC, which provides the industry’s position on the commission’s post-Fukushima recommendations, the industry shows how important it is for the NRC to act based on the facts from the accident.

The Fukushima spent fuel pools are an example of where facts have invalidated earlier conclusions. Shortly following the initial events, many believed that water levels in the pools—the Unit 4 pool, in particular—had fallen to the point that the spent fuel had overheated, failed and contributed to the accident. Now, with the benefit of visual inspections and samples from the four affected fuel pools, it is evident that the spent fuel rods did not experience major and significant failure.

The industry continues by saying that not having a clear understanding of the situation in a used fuel pool “could result in the diversion of needed resources away from more safety-significant activities.”

In learning this important lesson from Fukushima, the industry believes that:

Remote monitoring would enable operators to know when actions are needed to provide additional water to the pools. This recommendation is consistent with the action already taken by the industry on knowing the time until the pool will reach 200°F.

The industry fully supports the NRC’s decision to add the issue as a tier 1 priority in its near-term actions.

See NEI’s video to learn more about how spent fuel pools are designed and constructed to safely store used nuclear fuel.

Comments

Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Why America Needs the MOX Facility

If Isaiah had been a nuclear engineer, he’d have loved this project. And the Trump Administration should too, despite the proposal to eliminate it in the FY 2018 budget.

The project is a massive factory near Aiken, S.C., that will take plutonium from the government’s arsenal and turn it into fuel for civilian power reactors. The plutonium, made by the United States during the Cold War in a competition with the Soviet Union, is now surplus, and the United States and the Russian Federation jointly agreed to reduce their stocks, to reduce the chance of its use in weapons. Over two thousand construction workers, technicians and engineers are at work to enable the transformation.

Carrying Isaiah’s “swords into plowshares” vision into the nuclear field did not originate with plutonium. In 1993, the United States and Russia began a 20-year program to take weapons-grade uranium out of the Russian inventory, dilute it to levels appropriate for civilian power plants, and then use it to produce…

Nuclear Is a Long-Term Investment for Ohio that Will Pay Big

With 50 different state legislative calendars, more than half of them adjourn by June, and those still in session throughout the year usually take a recess in the summer. So springtime is prime time for state legislative activity. In the next few weeks, legislatures are hosting hearings and calling for votes on bills that have been battered back and forth in the capital halls.

On Tuesday, The Ohio Public Utilities Committee hosted its third round of hearings on the Zero Emissions Nuclear Resources Program, House Bill 178, and NEI’s Maria Korsnick testified before a jam-packed room of legislators.


Washingtonians parachuting into state debates can be a tricky platform, but in this case, Maria’s remarks provided national perspective that put the Ohio conundrum into context. At the heart of this debate is the impact nuclear plants have on local jobs and the local economy, and that nuclear assets should be viewed as “long-term investments” for the state. Of course, clean air and electrons …