Skip to main content

Talking About Radiation

Over the past several weeks I've been tackling a vexing topic: How to find a way to communicate effectively with the public about radiation and our environment. It was radiation pioneer Marie Curie who said, "Nothing in life is to be feared, it is to be understood."

Unfortunately, most of the anti-nukes don't do much more than obscure honest public debate with bad science and outlandish claims (many of which are easily debunked).

To get a better understanding of the sort of challenge we're taking on, read the following passage from Back of the Envelope -- a blog written by an ex-pat New Zealander now living in Scotland. New Zealand has been a "nuclear free zone," since late Prime Minister David Lange banned nuclear arms and nuclear powered ships from the country in 1985.

Though the author of the blog isn't a supporter of using nuclear energy for power production in New Zealand, he thinks it's far passed time for the country to shake off its anti-nuclear phobia:
I do find it strange however that 'nuclear' always means bombs. NZ has become irrational over the peaceful use of nuclear for medicine, research and power generation. . .

The NZ public has been conditioned to think nuclear-free is an absence of all 'nuclear' applications. This is stupid, radioactives are used every day in every hospital to cure people of cancer, you don't see many Greenpeace demonstrations outside cancer wards do you?

The nuclear-free stance is deep in the pysche's of NZers and i wonder if even we know what it means, its wrapped up in so much of how we see the world and ourselves, so i dispair of ever trying to explain to someone else...
Some other pertinent facts from NEI:

Measuring radiation dosage. Radiation dose is measured in rem, which is based on the effect of radiation on the human body. It takes into account both the amount of radiation deposited in body tissues and the type of radiation. A millirem is a thousandth of a rem.

Your average radiation dose. In all, the average person in the United States receives about 360 millirem of radiation per year. About 300 millirem comes from natural sources and 60 millirem from manmade sources...

Because of their advanced design and sophisticated containment structures, U.S. nuclear plants emit a negligible amount of radiation. In fact, even if you lived right next door to a nuclear power plant, you would still receive less radiation each year than you would receive in just one round-trip flight from New York to Los Angeles. A 1990 National Cancer Institute study, the broadest ever conducted, found no evidence of any increase in cancer mortality including childhood leukemia among people living in 107 counties that host, or are adjacent to, 62 major nuclear facilities in the United States.


Technorati tags: , , , , ,

Comments

Paul Gunter said…
Hi,
Didn't Madame Curie die of radiation poisoning?
I knew somebody was going to say that.

Could you comment on the actual facts presented?
As for the challenge of communicating about radiation, you don't really even need to go into much detail about the effects. Most people don't know that there is such a thing as natural radiation. They certainly don't know how much radiation is released by a nuclear power plant vs. a coal-fired plant or the background. The public perception is that radiation is a phenomenon unique to nuclear power plants and that there is a lot of it. Once we get that message out, we can start telling people about the effects.
Paul Gunter said…
Would you characterize the BEIR VII report as some of those "anti-nuke" folk?

Paul, NIRS
Mike said…
Hormesis, hormesis, hormesis

Afraid of Radiation? Low Doses are Good for You
by Donald W. Miller, Jr., MD
http://www.lewrockwell.com/miller/miller12.html

Is Chronic Radiation an Effective Prophylaxis Against Cancer?
http://www.jpands.org/jpands0901.htm

Radiation, Science, and Health
http://cnts.wpi.edu/RSH/
>>Would you characterize the BEIR VII report as some of those "anti-nuke" folk?

No. I suggest you read it. It says that although the balance of evidence favors a proportional linear relationship between dose and cancer, there is no evidence for any cancer effects below 5000-10000 millirem.
Paul Gunter said…
Hi Stewart,

We have read BEIR VII:
>http://www.nirs.org/radiation/radtech/nosafedose072005.pdf<

Curious that contrary to what you claim, the National Academy of Sciences panel concluded: "it is unlikely that a threshold exists for the induction of cancer" for low dose ionizing radiation.They also conclude that"there is extensive data on radiation-induced transmissible mutations in mice and other organisms. There is therefore no reason to believe that humans would be immune to this sort of harm."

In other words, the children of parents exposed to low dose radiation are at higher risk without a threshold dose.

Can you cite me some context (perhaps a page number) in the BEIR VII for your attribution that there is no evidence for any cancer effects below 5000-10000 millirem.

Your claim doesnt square with BEIR VII conclusions.

Thanks,
Paul, NIRS
"Experiments that quantified DNA breakage, chromosomal aberrations, or gene mutations induced by low total doses or low doses per fraction suggest that the dose response over the range of 20 to 100 mGy [2000-10000 millirem] is linear. Limited data indicate that the dose response for DNA breakage is linear down to one mGy [100 millirem], and biophysical arguments suggest that the response should be linear between zero and five mGy [zero and 500 millirem]."
—BEIR VII, p.553

They can't find evidence for a linear response under 2000 millirem and the evidence between 2000 and 10000 is inconclusive. Theoretically, they can't see why it shouldn't go down to zero but are going to have to hunt for actual data.

Popular posts from this blog

Sneak Peek

There's an invisible force powering and propelling our way of life.
It's all around us. You can't feel it. Smell it. Or taste it.
But it's there all the same. And if you look close enough, you can see all the amazing and wondrous things it does.
It not only powers our cities and towns.
And all the high-tech things we love.
It gives us the power to invent.
To explore.
To discover.
To create advanced technologies.
This invisible force creates jobs out of thin air.
It adds billions to our economy.
It's on even when we're not.
And stays on no matter what Mother Nature throws at it.
This invisible force takes us to the outer reaches of outer space.
And to the very depths of our oceans.
It brings us together. And it makes us better.
And most importantly, it has the power to do all this in our lifetime while barely leaving a trace.
Some people might say it's kind of unbelievable.
They wonder, what is this new power that does all these extraordinary things?

A Design Team Pictures the Future of Nuclear Energy

For more than 100 years, the shape and location of human settlements has been defined in large part by energy and water. Cities grew up near natural resources like hydropower, and near water for agricultural, industrial and household use.

So what would the world look like with a new generation of small nuclear reactors that could provide abundant, clean energy for electricity, water pumping and desalination and industrial processes?

Hard to say with precision, but Third Way, the non-partisan think tank, asked the design team at the Washington, D.C. office of Gensler & Associates, an architecture and interior design firm that specializes in sustainable projects like a complex that houses the NFL’s Dallas Cowboys. The talented designers saw a blooming desert and a cozy arctic village, an old urban mill re-purposed as an energy producer, a data center that integrates solar panels on its sprawling flat roofs, a naval base and a humming transit hub.

In the converted mill, high temperat…

Seeing the Light on Nuclear Energy

If you think that there is plenty of electricity, that the air is clean enough and that nuclear power is a just one among many options for meeting human needs, then you are probably over-focused on the United States or Western Europe. Even then, you’d be wrong.

That’s the idea at the heart of a new book, “Seeing the Light: The Case for Nuclear Power in the 21st Century,” by Scott L. Montgomery, a geoscientist and energy expert, and Thomas Graham Jr., a retired ambassador and arms control expert.


Billions of people live in energy poverty, they write, and even those who don’t, those who live in places where there is always an electric outlet or a light switch handy, we need to unmake the last 200 years of energy history, and move to non-carbon sources. Energy is integral to our lives but the authors cite a World Health Organization estimate that more than 6.5 million people die each year from air pollution.  In addition, they say, the global climate is heading for ruinous instability. E…