Skip to main content

The Cost of Concentrated Solar Power

From today's edition of Electric Power Daily (no link):
EPRI estimates that a 500-MW solar plant would cost about $1.5 billion, or $3,000/kW, Bedard said. A just-built 64-MW solar plant in Nevada cost about $4,000/kW, he said. Nevada Power is buying the output from the Nevada Solar One project.

EPRI has had little involvement with solar power in the last decade, Bedard said. But climate change and renewable portfolio standards have renewed utility interest in the technology.

Currently, electricity from a CSP plant costs about 16 cents/kWh, compared with 7 cents/kWh for wind and 5.5 cents/kWh for coal, he said.
That's a serious chunk of change.


Anonymous said…
This is about the same estimated overnight capital cost range as new nuclear in the Keystone Center's recent report.
Rod Adams said…
I wrote a blog post about Nevada Solar One earlier this month. You can find it at Nevada Solar One Starts Up.

The real numbers provide a different story than the advertised ones. The plant has a name plate capacity of 64MWe, but an expected annual energy production of just 124 million kilowatt hours per year. If you divide that number by 8760 (hours in a year) you find that the average production will be just a bit more than 14 MWe (CF = 22%).

In contrast, if you built a nuclear plant with the same capacity, you would expect that it would produce approximately 475 million kilowatt hours per year assuming that the plant achieves a fairly modest 85% capacity factor - well below the current fleet average for the American nuclear power industry.

According to a recent report produced for Congress, the US Navy has estimated that the cost difference between a cruiser sized vessel powered with four new LM2500 type engines (with a total power output of a about 130 MW) and one powered with a proven PWR steam plant (essentially one of the two plants that now power aircraft carriers) is on the order of 600-800 million dollars.

This is not firm cost data and takes some interpretation, but it sure looks to me like there are available, proven, operating nuclear plants that are being built in the present tense that can come in for approximately the same cost per name plate capacity as a concentrating solar system.

The advantage that the nuclear plant would have is that it could produce and sell almost 4 times as many kilowatt hours per year.

I am also quite sure that there are ways to reduce the unit costs through increased production rates by spreading fixed costs over a larger number of plants than the one or two a year that are now being built for the Navy.

Only one problem - the Navy would have to have some encouragement to begin allowing its contractors to seek additional customers.

BTW - go ahead and make the "enrichment" argument if you wish. There is no reason at all for a commercial version of a carrier sized reactor plant to use HEU - the NS Savannah showed that a reactor large enough for a surface ship could do quite well with 5% enrichment even using what we knew about reactor fuel designs in the 1950s.
Regarding "The Cost of Concentrated Solar Power" (2007-06-28), there really is no no need for concentrating solar power in the US because there is a simple mature technology that can deliver huge amounts of clean energy without any of the headaches of concentrating solar power.

I refer to 'Nuclear Power' (NP), the technique of amplifying a neutron flux through the fission of heavy metals to create heat, and then using the heat to raise steam and drive turbines and generators, just like a conventional power station. It is possible to run NP plants on demand so that electricity generation may continue through the night or on cloudy days, or when the Russians decide to cut off the gas. This technology has been generating electricity successfully in California since 1957 and six million Californians currently get their electricity from this source. NP plants are now being planned or built in many parts of the world.

NP works best near cool shores and, of course, these are not always nearby! But it is feasible and economic to decrease outlet temperatures using highly-efficient 'natural draft' cooling towers. With plant efficiency losses at about 3% per cooling tower, NP plants may be placed anywhere in the US. NP plants at existing coal plant sites could easily meet the entire current US demand for electricity.

In the recent 'EIA Electric Power Annual' report commissioned by the US government, it is estimated that NP electricity, which does not need to be imported from exotic locales, is already one of the cheapest sources of electricity in the United States, including the cost of cooling. A large-scale cooling tower manufacturing infrastructure has also been proposed by Alstom as a means of optimising the use of NP throughout the world.

Further information about NP may be found at and . Copies of the EIA Electric Power Annual report may be downloaded from . The many problems associated with concentrating solar power are summarised at .

For those of you who aren't blog administrators, this is a parody.

KenG said…

That's brilliant. The only part lacking was that you didn't run fast and loose with the facts like the CSP fanatics. Since their claim of "half million
Californians" being powered by CSP is true only for a moment at peak generation and only for home use, not commercial/industrial, you could have easily said 15 or 20 million people get their power from nuclear.
Solar Power said…
Of course to use nuclear power is much easier now then solar power, but solar power is absolutely harmless. There should be a way to use it effectively, just we need some time to investigate it. Using of solar power has a big future in my opinion.

Popular posts from this blog

Sneak Peek

There's an invisible force powering and propelling our way of life.
It's all around us. You can't feel it. Smell it. Or taste it.
But it's there all the same. And if you look close enough, you can see all the amazing and wondrous things it does.
It not only powers our cities and towns.
And all the high-tech things we love.
It gives us the power to invent.
To explore.
To discover.
To create advanced technologies.
This invisible force creates jobs out of thin air.
It adds billions to our economy.
It's on even when we're not.
And stays on no matter what Mother Nature throws at it.
This invisible force takes us to the outer reaches of outer space.
And to the very depths of our oceans.
It brings us together. And it makes us better.
And most importantly, it has the power to do all this in our lifetime while barely leaving a trace.
Some people might say it's kind of unbelievable.
They wonder, what is this new power that does all these extraordinary things?

A Design Team Pictures the Future of Nuclear Energy

For more than 100 years, the shape and location of human settlements has been defined in large part by energy and water. Cities grew up near natural resources like hydropower, and near water for agricultural, industrial and household use.

So what would the world look like with a new generation of small nuclear reactors that could provide abundant, clean energy for electricity, water pumping and desalination and industrial processes?

Hard to say with precision, but Third Way, the non-partisan think tank, asked the design team at the Washington, D.C. office of Gensler & Associates, an architecture and interior design firm that specializes in sustainable projects like a complex that houses the NFL’s Dallas Cowboys. The talented designers saw a blooming desert and a cozy arctic village, an old urban mill re-purposed as an energy producer, a data center that integrates solar panels on its sprawling flat roofs, a naval base and a humming transit hub.

In the converted mill, high temperat…

Seeing the Light on Nuclear Energy

If you think that there is plenty of electricity, that the air is clean enough and that nuclear power is a just one among many options for meeting human needs, then you are probably over-focused on the United States or Western Europe. Even then, you’d be wrong.

That’s the idea at the heart of a new book, “Seeing the Light: The Case for Nuclear Power in the 21st Century,” by Scott L. Montgomery, a geoscientist and energy expert, and Thomas Graham Jr., a retired ambassador and arms control expert.

Billions of people live in energy poverty, they write, and even those who don’t, those who live in places where there is always an electric outlet or a light switch handy, we need to unmake the last 200 years of energy history, and move to non-carbon sources. Energy is integral to our lives but the authors cite a World Health Organization estimate that more than 6.5 million people die each year from air pollution.  In addition, they say, the global climate is heading for ruinous instability. E…