Skip to main content

Stat Pack: EIA's Annual Energy Review 2004 (Part 1)

Every year the Department of Energy's Energy Information Administration publishes the Annual Energy Review:
The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, international energy, as well as financial and environment indicators; and data unit conversion tables.
The 2004 publication was published in August. Its 435 pages are packed with charts, tables, graphs and numbers. It's a statistician'’s dream!

Over the next few weeks I'll take a closer look at particular sections of the AER. I'll try to help readers understand what the report is about and what it means in terms everyone can understand.

Energy Overview

On the main page of the AER, there are flow diagrams of different types of energy. Today I'm only going to hit on the energy issues and this flow diagram that shows how energy flows through our economy.

According to the flow diagram, of all the energy supplied in the U.S. in 2004, about 68% was produced domestically and 32% came from abroad. Of that 32% from abroad, 84% was from petroleum.

In 2004, 40% of the total energy consumed in the U.S. came from petroleum. 86% of the total energy consumed came from fossil fuels. In 1980, that figure stood at 89%. In 1990 it was 86%.

But how do we use that energy? 21% went to the residential sector, 18% went to commercial, 28% went to transportation and 33% went to the industrial sector. Here's a brief definition of what makes up three of the four sectors. While transportation is self-explanatory, it might help to take a closer look at the other definitions:
Private households and apartment buildings, where energy is consumed primarily for space heating, water heating, air conditioning, lighting, refrigeration, cooking, and clothes drying are classified as residential. Non-manufacturing business establishments (including hotels, motels, restaurants, wholesale businesses, retail stores, health, social, and educational institutions) are generally classified as commercial. Manufacturing, construction, mining, agriculture, fishing, and forestry establishments are specified industrial.
When we talk energy, the terms you'll hear most often is British Thermal Unit or Btu. Why not kilowatts or barrels or tons? According to
A British thermal unit is the quantity of heat required to raise the temperature of one pound of water from 60° to 61°F at a constant pressure of one atmosphere.
To drive your car requires heat used in the engine burned from gasoline. To use a lamp requires heat used in a nuclear reactor to create steam to turn a turbine which creates electricity. To cook food on a stove requires heat burning natural gas. That's the common element.

So if I use 2,000 cubic feet of natural gas in a year to cook food on my stove, how many Btus is that equivalent to? 2,062,000 Btus or 2.06 MMBtus. Here's how you figure it out. If you start at the front page of the Annual Energy Review under Appendices, there is a link called Thermal Conversion Factors. These tables and charts convert BTUs into tons for coal, barrels for oil, cubic feet for natural gas and kilowatt hours for electricity.

In 2004, the average person in the U.S. consumed 340 MMBtus -- about the average consumption for an individual since the 1970s. To put that in perspective, we ought to convert that figure into equivalents based on oil, coal, natural gas and uranium.

To find out the barrels of oil consumed per person, I looked at table A3 of the conversion factors under Total for 2004 (340 / 5.34 ~ 64 barrels of oil). One barrel of oil equals 42 gallons. So if all the energy consumed was from oil, the average person consumed about 2,700 gallons of it in 2004.

The average person consumed 17 tons of coal in 2004 (340 / 20.276 ~ 17 tons). That's the same weight of about 8 cars! For natural gas, the consumption came out to 330 thousand cubic feet (340 / .00103 ~ 330,097 cubic feet).

In other words, every year the average person consumes enough natural gas to fill 3 Olympic-size swimming pools.

A uranium fuel pellet weighs 7 grams and is roughly the size of a pencil eraser. We know that one fuel pellet contains the same amount of energy as about 1,780 pounds of coal; 149 gallons of oil; or 17,000 cubic feet of natural gas.

So if we take 17 tons of coal (from above), multiply it by 2,000 to convert to pounds and divide by 1,780, we get about a total equivalent of 19 uranium fuel pellets consumed by the average person if all the energy came from nuclear. That's just a handful of erasers!

As always, keep in mind that it we would never want to rely on just one source of fuel to generate electricity. These comparisons were given to show the energy equivalents of each fuel.

Technorati tags:


Iain McClatchie said…
The average person didn't consume 2700 gallons of oil in 2004 -- the average American did. If the average person consumed that much energy from the same sources Americans do now, known worldwide fossil fuel reserves would be gone in about four years.

The fossil fuel industry simply can't physically grow to the levels required if even some other people (i.e. China and India's urban population) are going to adopt a lifestyle similar to our own.

Large-scale worldwide utilization of nuclear energy is going to be a part of the future. It's something we Americans are going to have to accept. We are going to have to determine how to be secure in such a world, because postponing such a world (re: Iran) is not going to work for very much longer.

Similarly, a significant reduction in U.S. domestic petroleum use is going to happen, one way or another. I practice (some) conservation, but I'd feel a lot more secure with massive, alternative domestic capacity. The only practical offering in the near future is nuclear.

Popular posts from this blog

Sneak Peek

There's an invisible force powering and propelling our way of life.
It's all around us. You can't feel it. Smell it. Or taste it.
But it's there all the same. And if you look close enough, you can see all the amazing and wondrous things it does.
It not only powers our cities and towns.
And all the high-tech things we love.
It gives us the power to invent.
To explore.
To discover.
To create advanced technologies.
This invisible force creates jobs out of thin air.
It adds billions to our economy.
It's on even when we're not.
And stays on no matter what Mother Nature throws at it.
This invisible force takes us to the outer reaches of outer space.
And to the very depths of our oceans.
It brings us together. And it makes us better.
And most importantly, it has the power to do all this in our lifetime while barely leaving a trace.
Some people might say it's kind of unbelievable.
They wonder, what is this new power that does all these extraordinary things?

A Design Team Pictures the Future of Nuclear Energy

For more than 100 years, the shape and location of human settlements has been defined in large part by energy and water. Cities grew up near natural resources like hydropower, and near water for agricultural, industrial and household use.

So what would the world look like with a new generation of small nuclear reactors that could provide abundant, clean energy for electricity, water pumping and desalination and industrial processes?

Hard to say with precision, but Third Way, the non-partisan think tank, asked the design team at the Washington, D.C. office of Gensler & Associates, an architecture and interior design firm that specializes in sustainable projects like a complex that houses the NFL’s Dallas Cowboys. The talented designers saw a blooming desert and a cozy arctic village, an old urban mill re-purposed as an energy producer, a data center that integrates solar panels on its sprawling flat roofs, a naval base and a humming transit hub.

In the converted mill, high temperat…

Seeing the Light on Nuclear Energy

If you think that there is plenty of electricity, that the air is clean enough and that nuclear power is a just one among many options for meeting human needs, then you are probably over-focused on the United States or Western Europe. Even then, you’d be wrong.

That’s the idea at the heart of a new book, “Seeing the Light: The Case for Nuclear Power in the 21st Century,” by Scott L. Montgomery, a geoscientist and energy expert, and Thomas Graham Jr., a retired ambassador and arms control expert.

Billions of people live in energy poverty, they write, and even those who don’t, those who live in places where there is always an electric outlet or a light switch handy, we need to unmake the last 200 years of energy history, and move to non-carbon sources. Energy is integral to our lives but the authors cite a World Health Organization estimate that more than 6.5 million people die each year from air pollution.  In addition, they say, the global climate is heading for ruinous instability. E…