Skip to main content

Another Blogger for Nuclear Energy

SnowDhalia, a neighbor of the Seabrook Nuclear Power Station (pictured at left), is talking about how she changed her mind about nuclear energy:
I'm a liberal-environmentalist type, and until a few years ago, I thought my life was pretty good except for one thing: this damn nuclear power plant. It could blow at any moment, was my thought. How would we all escape? When my mother came to visit me from the Midwest, she'd squirrel away a large amount of cash, so when catastrophe struck, I wouldn't have to be stuck in a line at the ATM. I could just stuff my son and my dog in the car, hit the Mass. Pike and get out of Dodge.

Then something happened: I actually learned what nuclear power was.
Being married to a nuclear engineer helps, apparently. Read the rest right now.

UPDATE: Physical Insights likes what he's reading.

Comments

Anonymous said…
I made the following comment to this post:

Great post!

I'd like to add some nuance to being "realistic." A group of nuclear-expert engineers, who developed nuclear power, 19 members of the National Academy of Engineering, addressed engineering "realism" in a Policy Forum in the journal "Science" 20Sep02 (and response-to-comments 10Jan03). See here.

The public consequences of nuclear power accidents (i.e., damage to the reactor fuel) is not just limited because any such sequence of events is improbable (although it would be more likely to happen in a few hours than over a long period of time).

Our experience with several serious reactor core accidents, supported by extensive research on fuel failure modes and mechanisms shows that most radioactivity in fuels does not come "streaming out" of the fuel the way we assume it does in our unrealistic safety analyses. And the radioactivity that is released is not in a "weaponized" condition. It is not in the small particulate sizes and chemical stability to remain airborne in dispersible/breathable form in the mixing water/vapor containment atmosphere (even if the containment were leaking). The radioactivity is chemically highly reactive, and it clumps together and gets captured in the water and plates out on surfaces, etc.

As a result, there is relatively little available to be released from a containment. (Containment moisture tends to plug crack-type leaks. Testing containment leakage effects indicated that iodines could be in water slowly flowing through such passages, flowing down the outside of the containment building.)

The 1979 TMI core melting occurred in a couple of hours, with the containment open to, and radioactivity releases into, the auxiliary building. This led to some releases through the building vents. But trivial amounts of the radioiodines could be found immediately outside the buildings. None were measured in the control room air intake monitors.

Even with one-third of the core melted, with cooling water being released into the containment, the amount of radiation in the containment atmosphere was so much less than the unrealistic safety analyses calculations, that the operators thought that they were still trying to prevent core damage, with the exception of gaseous leakage from a few fuel rods. (A brief attachment to the “White Paper” at the above link describes the relevant experience of the TMI and Chernobyl accidents .)

So the public is protected not just by the improbability of severe reactor core damage, but by the “realism” of the actual physical and chemical conditions which severely constrain radioactivity dispersion inside, and similarly outside, a nuclear power plant.

Radiation doses and dose effects are similarly unrealistic in safety analyses calculations.

Combined with the realistic protection of people by sheltering or slowly walking away from any reported releases, and avoiding potentially-contaminated foods and milk, radiation doses and dose effects can't be significant, and not beyond a short distance from the plant, generally less than about a half mile.

It’s realistic to conclude that few if any people outside a nuclear power plant could have a radiation injury, much less be killed, by radiation exposure from any “worst case” accident.

The “long-term” health effects (e.g., an “increase” in cancer risk, say, from 25% to 25.0001%) are also unrealistically calculated in safety analyses. Most doses are well within the variations of natural background radiation, which show no adverse effects to people exposed to high-background doses vs. people with low or average doses. The same is true for radiation and nuclear medicine diagnostic procedures, which have been studied for more than 50 years.

Jim Muckerheide

Popular posts from this blog

Activists' Claims Distort Facts about Advanced Reactor Design

Below is from our rapid response team . Yesterday, regional anti-nuclear organizations asked federal nuclear energy regulators to launch an investigation into what it claims are “newly identified flaws” in Westinghouse’s advanced reactor design, the AP1000. During a teleconference releasing a report on the subject, participants urged the Nuclear Regulatory Commission to suspend license reviews of proposed AP1000 reactors. In its news release, even the groups making these allegations provide conflicting information on its findings. In one instance, the groups cite “dozens of corrosion holes” at reactor vessels and in another says that eight holes have been documented. In all cases, there is another containment mechanism that would provide a barrier to radiation release. Below, we examine why these claims are unwarranted and why the AP1000 design certification process should continue as designated by the NRC. Myth: In the AP1000 reactor design, the gap between the shield bu...

Wednesday Update

From NEI’s Japan micro-site: NRC, Industry Concur on Many Post-Fukushima Actions Industry/Regulatory/Political Issues • There is a “great deal of alignment” between the U.S. Nuclear Regulatory Commission and the industry on initial steps to take at America’s nuclear energy facilities in response to the nuclear accident in Japan, Charles Pardee, the chief operating officer of Exelon Generation Co., said at an agency briefing today. The briefing gave stakeholders an opportunity to discuss staff recommendations for near-term actions the agency may take at U.S. facilities. PowerPoint slides from the meeting are on the NRC website. • The International Atomic Energy Agency board has approved a plan that calls for inspectors to evaluate reactor safety at nuclear energy facilities every three years. Governments may opt out of having their country’s facilities inspected. Also approved were plans to maintain a rapid response team of experts ready to assist facility operators recoverin...

Nuclear Utility Moves Up in Credit Ratings, Bank is "Comfortable with Nuclear Strategy"

Some positive signs that nuclear utilities can continue to receive positive ratings even while they finance new nuclear plants for the first time in decades: Wells Fargo upgrades SCANA to Outperform from Market Perform Wells analyst says, "YTD, SCG shares have underperformed the Regulated Electrics (total return +2% vs. +9%). Shares trade at 11.3X our 10E EPS, a modest discount to the peer group median of 11.8X. We view the valuation as attractive given a comparatively constructive regulatory environment and potential for above-average long-term EPS growth prospects ... Comfortable with Nuclear Strategy. SCG plans to participate in the development of two regulated nuclear units at a cost of $6.3B, raising legitimate concerns regarding financing and construction. We have carefully considered the risks and are comfortable with SCG’s strategy based on a highly constructive political & regulatory environment, manageable financing needs stretched out over 10 years, strong partners...