Skip to main content

DOE Directs Contractor on Repository Design

I’ve spent the vast majority of my career in the nuclear industry working in waste and used fuel management. First, I interned at DOE’s Office of Civilian Radioactive Waste Management as an undergraduate, then I spent a summer in France modeling breeder reactor cores, next I worked on waste management issues at the Defense Nuclear Facilities Safety Board, for my master’s thesis I modeled gas evolution from Hanford N-Reactor fuel in sealed canisters, and I worked for seven years in Dominion’s nuclear spent fuel group.

In that time, I’ve witnessed many DOE proposals for repository design and function: a “hot” versus a “cold” repository; wet fuel transfer versus dry fuel transfer versus no fuel transfer; standard canister design versus standard canister design criteria versus “let the utilities decide what to ship it in"; and on and on. All of these proposals are technically feasible and also have pros and cons.

So, I read with great interest today DOE’s announcement that it has instructed its contractor to
devise a plan to operate the Yucca Mountain repository as a primarily “clean” or non-contaminated facility.
What this means to the layperson is that instead of transporting fuel from reactor sites to Yucca Mountain in one container, removing it (either in a pool or inert, dry environment), and then repackaging it in another container, most of the used fuel will be shipped in standardized containers that can be placed into an overpack and installed directly in the repository.

This plan makes a lot of sense.

Moving individual fuel assemblies around whenever the mood strikes is the best way to damage them. And while there are several methods to safely handle damaged fuel, they are costly and time-consuming. This proposal means that the vast majority of fuel will be handled the minimal number of times between core discharge and placement in a repository. A standardized design for the canisters would also facilitate efficient removal of the fuel for recycling if such technologies are later available.

Most importantly, I’m hopeful that focusing on this reasonable approach will, in DOE’s words, simplify the design and license application for the repository; because ultimately, after protecting the health and the safety of the public, DOE’s next greatest responsibility is to expedite the removal of used fuel from reactor sites.

Technorati tags: , ,


Solomon2 said…
for my master’s thesis I modeled gas evolution from Hanford N-Reactor fuel in sealed canisters

Hey, you're exactly the person who I hoped would catch this DOE announcement. Sure, everything can stay in the containers, but won't outgassing from fuel assemblies eventually burst the rods and release radioactives into the surroundings?
No. Fuel rods and fuel containers are designed to withstand internal pressue from gases. Furthermore, when putting used fuel into a container, certain fuel characterization calculations must be done to make sure that the fuel loading does not challenge the design of the container. Parameters like gamma and neutron doses as a function of time, decay heat, and the amount of pressure that could be generated from off-gassing are determined based on the original fuel characteristics, power history, cooling time, etc.
Solomon2 said…
Specifically, I recall learning that after several hundred years the rods would burst due to the pressure generated from gaseous radioactive decay products. Is this correct?
For all scenarios I can think of, no, that is not correct.

I'm sure someone could come up with some sort of chain of extremely unlikely events (fuel for which the enrichment was incorrect, plus unknowingly operating at powers beyond what a plant is licensed for, etc. etc.) after which a fuel rod could burst. But as I mentioned, fuel containers are designed to withstand high internal pressure, so there would still be no release to the surroundings.

You see, the design criteria for used fuel containers are determined by imagining the worst possible configuration. In this case, even though operators are prohibited from loading fuel that is known to have significant defects (without canning it first, but that's a different story) the container is designed to maintain its sealing integrity even if every fuel rod fails.

Popular posts from this blog

A Billion Miles Under Nuclear Energy (Updated)

And the winner is…Cassini-Huygens, in triple overtime.

The spaceship conceived in 1982 and launched fifteen years later, will crash into Saturn on September 15, after a mission of 19 years and 355 days, powered by the audacity and technical prowess of scientists and engineers from 17 different countries, and 72 pounds of plutonium.

The mission was so successful that it was extended three times; it was intended to last only until 2008.

Since April, the ship has been continuing to orbit Saturn, swinging through the 1,500-mile gap between the planet and its rings, an area not previously explored. This is a good maneuver for a spaceship nearing the end of its mission, since colliding with a rock could end things early.

Cassini will dive a little deeper and plunge toward Saturn’s surface, where it will transmit data until it burns up in the planet’s atmosphere. The radio signal will arrive here early Friday morning, Eastern time. A NASA video explains.

In the years since Cassini has launc…

Sneak Peek

There's an invisible force powering and propelling our way of life.
It's all around us. You can't feel it. Smell it. Or taste it.
But it's there all the same. And if you look close enough, you can see all the amazing and wondrous things it does.
It not only powers our cities and towns.
And all the high-tech things we love.
It gives us the power to invent.
To explore.
To discover.
To create advanced technologies.
This invisible force creates jobs out of thin air.
It adds billions to our economy.
It's on even when we're not.
And stays on no matter what Mother Nature throws at it.
This invisible force takes us to the outer reaches of outer space.
And to the very depths of our oceans.
It brings us together. And it makes us better.
And most importantly, it has the power to do all this in our lifetime while barely leaving a trace.
Some people might say it's kind of unbelievable.
They wonder, what is this new power that does all these extraordinary things?

Missing the Point about Pennsylvania’s Nuclear Plants

A group that includes oil and gas companies in Pennsylvania released a study on Monday that argues that twenty years ago, planners underestimated the value of nuclear plants in the electricity market. According to the group, that means the state should now let the plants close.


The question confronting the state now isn’t what the companies that owned the reactors at the time of de-regulation got or didn’t get. It’s not a question of whether they were profitable in the '80s, '90s and '00s. It’s about now. Business works by looking at the present and making projections about the future.

Is losing the nuclear plants what’s best for the state going forward?

Pennsylvania needs clean air. It needs jobs. And it needs protection against over-reliance on a single fuel source.

What the reactors need is recognition of all the value they provide. The electricity market is depressed, and if electricity is treated as a simple commodity, with no regard for its benefit to clean air o…