Skip to main content

Looking Back at ABC News and "Loose Nukes" with Dr. Andrew Karam (Part II)

Later, Dr. Karam provided some background on research reactors, and why the risks involved with their operation were exaggerated by ABC News:
A research reactor consists of a reactor core submerged in a deep pool of water. The reactor part is an assembly of metal plates that are uranium oxide in a metal or ceramic matrix, clad with metal (usually a zirconium or aluminum alloy). The power output is sufficiently low that the natural circulation of water in the pool (warm water rises, cool water sinks) keeps the reactor cool. The fuel elements require fairly precise spacing to sustain a chain reaction - too close or too distant and the reaction will stop.

Throwing a bomb into the pool will damage the core, and may break fuel elements. This, in turn, would release some radioactivity - primarily within the reactor building. The reason for this is that the fuel elements are metal - they are more likely to be bent or twisted than to be broken in half, and they will certainly not be vaporized. This is important because it means that the amount of radioactivity that can escape is limited - a cracked fuel element, even a broken one, will release only as much radioactivity as is exposed at that point. Think of cutting into a pie - some of the filling leaks out into the cut area, but the pie does not spontaneously empty when it's cut open. Similarly, if a fuel element is broken or cracked, some of the radioactivity will leak out, but only a fraction. In other words, there will likely be a release of radioactivity, but most of the radioactivity will remain contained within the fuel elements. Of the activity that escapes from the fuel elements, much would be entrained in the water, and would end up in the reactor building, not on campus. Some contamination would likely be released, and some would likely enter the environment. However, the risk from this would be low because radiation is less dangerous than many tend to believe. I would refer you to the papers I sent you earlier for more on the effects of low-level radiation exposure.

The bottom line is that throwing a small bomb into a reactor pool is likely to damage the core, and likely to cause some radioactivity to be released. However, I would not expect this contamination to pose a health risk to people nearby. Similarly, a truck bomb would likely damage the core and could release larger amounts of radioactivity to the environment, but much of the blast would be diverted by the concrete "swimming pool," reducing the amount of damage.
As you can see, spending the time and effort to put together an explanation like this is rather considerable, and it will always be easier to play on people's fears of the unknown, or simply what isn't understood, than to explain the science involved.

Technorati tags: , , , ,


Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Why America Needs the MOX Facility

If Isaiah had been a nuclear engineer, he’d have loved this project. And the Trump Administration should too, despite the proposal to eliminate it in the FY 2018 budget.

The project is a massive factory near Aiken, S.C., that will take plutonium from the government’s arsenal and turn it into fuel for civilian power reactors. The plutonium, made by the United States during the Cold War in a competition with the Soviet Union, is now surplus, and the United States and the Russian Federation jointly agreed to reduce their stocks, to reduce the chance of its use in weapons. Over two thousand construction workers, technicians and engineers are at work to enable the transformation.

Carrying Isaiah’s “swords into plowshares” vision into the nuclear field did not originate with plutonium. In 1993, the United States and Russia began a 20-year program to take weapons-grade uranium out of the Russian inventory, dilute it to levels appropriate for civilian power plants, and then use it to produce…

Nuclear Is a Long-Term Investment for Ohio that Will Pay Big

With 50 different state legislative calendars, more than half of them adjourn by June, and those still in session throughout the year usually take a recess in the summer. So springtime is prime time for state legislative activity. In the next few weeks, legislatures are hosting hearings and calling for votes on bills that have been battered back and forth in the capital halls.

On Tuesday, The Ohio Public Utilities Committee hosted its third round of hearings on the Zero Emissions Nuclear Resources Program, House Bill 178, and NEI’s Maria Korsnick testified before a jam-packed room of legislators.

Washingtonians parachuting into state debates can be a tricky platform, but in this case, Maria’s remarks provided national perspective that put the Ohio conundrum into context. At the heart of this debate is the impact nuclear plants have on local jobs and the local economy, and that nuclear assets should be viewed as “long-term investments” for the state. Of course, clean air and electrons …