Skip to main content

Uranium Notes

Mineweb recently interviewed Sprott Asset Management Research Analyst Kevin Bambrough and asked him what he thought about the future of the uranium market:
Bambrough believes "we have just started a long term uranium bull market that will end in a "uranium mania" as utilities and countries drive uranium prices to unbelievable highs as they compete to secure supplies." Many nations and utility companies are already competing for low supplies of above ground-inventories and newly-mined uranium. In an article published a year ago, Sprott asserted that "the fundamentals for uranium going forward are superlative both on the demand and supply sides of the equation. ...It has become apparent to us that we are in the nascent stage of a nuclear renaissance."

(snip)

The dearth of uranium exploration and of new discoveries has left only a handful of deposits internationally "that show real promise at current prices," according to Sprott analysts. The good news is that uranium is more abundant on this planet than hydrocarbons. "The world is very unlikely ever to run out of uranium, as it will oil, natural gas, and even coal," declared Sprott, adding that some predict the looming uranium shortage may be so severe that the price of uranium could reach $110 within the next five years.
Back in June, my colleague Clifton Farrell wrote:
Forecasts of new nuclear generation expect approximately 40-60 new reactors worldwide by 2020. This will increase uranium demand to approximately 195 million pounds in 2010 and 240 million pounds by 2020. For an assumed price of $30/lb U3O8, the International Atomic Energy Agency (IAEA) estimated world uranium resources in 2003 to be 3,537,000 metric tons, an amount adequate to fuel conventional reactors for approximately 50 years. The IAEA further estimated all conventional uranium resources to be 14.4 million metric tons, an amount which would cover over 200 years'’ supply at current rates of consumption.

Importantly, these forecasts do not include non-conventional sources of uranium, such as those contained in phosphates or in seawater, which are currently not economic to extract but represent a near limitless supply of uranium to meet increased demand. Clearly, there are very adequate uranium (and thorium) resources to fuel the world's expanding nuclear fleet.
And that doesn't even begin to address the issue of reprocessing of used nuclear fuel -- something that's already done overseas, but that the U.S. has eschewed so far for economic reasons. Here's Joseph Somsel:
Reprocessing spent nuclear fuel is an established technology, dating back to the Manhattan Project. France, Russia, Japan, and Great Britain all do it. In the classic process, one chops up the fuel rods, dissolves them in nitric acid and separates the uranium/plutonium in one liquid stream, the fission products in another, and the actinides in a third (the zirconium cladding “husks” don’t dissolve.) The uranium is still relatively enriched in uranium-235 compared to natural, so is “blended up” to reactor fuel standards. The plutonium is mixed with uranium to become what’s known as “mixed oxide fuel” or MOX. MOX is every bit as good as reactor fuel as what our plants run on today, albeit a bit more hassle for the utilities to handle.
Duke Power is already using MOX fuel at the Catawba Nuclear Power Plant. For more on recycling, check out The Energy Blog. And thanks to Peak Oil Optimist for a pointer.

Technorati tags: , , , , ,

Comments

ben said…
I think that pretty soon North America will have to make a choice: bury the nuclear waste so that it's never found again or make it accessible to future generations for reporcessing.

Anybody know how much reprocessed uranium would cost?
Joseph Somsel said…
The referenced article only tried to estimate the capital cost differences between Yucca Mountain and the hardware to reprocess the spent fuel and burn the worst of it - the actinides. I came up with about $80 billion less for recycle but that's back-of-the-envelope.

The as-delvered cost differences between once-thru fuel and recycled MOX are non-trivial just looking at the fuel bills but insignificant compared to the overall cost of nuclear electricity at the bus bar. That $80 billion will cover a lot of reprocessing!

As a technical note, the MOX that Catawba is burning is weapons-grade plutonium I believe. Recycled reactor-grade uranium is a bit less desirable for diversion but a bit more hassle for the operators and fabricators.

One of the footnoted links in the article points to a study by Professor Peterson of UC Berkeley pointing out that in a few hundred years, digging out the spent fuel at Yucca Mountain would be cheap and easy, using today's tools.

A waggish friend of mine has proposed we rename Yucca Mountain Project as the "Jimmy Carter Memorial Money Hole."
Joseph Somsel said…
Sorry, that should read "recycled reactor-grade plutonium (MOX)" in the third paragaph above.

Popular posts from this blog

A Design Team Pictures the Future of Nuclear Energy

For more than 100 years, the shape and location of human settlements has been defined in large part by energy and water. Cities grew up near natural resources like hydropower, and near water for agricultural, industrial and household use.

So what would the world look like with a new generation of small nuclear reactors that could provide abundant, clean energy for electricity, water pumping and desalination and industrial processes?

Hard to say with precision, but Third Way, the non-partisan think tank, asked the design team at the Washington, D.C. office of Gensler & Associates, an architecture and interior design firm that specializes in sustainable projects like a complex that houses the NFL’s Dallas Cowboys. The talented designers saw a blooming desert and a cozy arctic village, an old urban mill re-purposed as an energy producer, a data center that integrates solar panels on its sprawling flat roofs, a naval base and a humming transit hub.

In the converted mill, high temperat…

Sneak Peek

There's an invisible force powering and propelling our way of life.
It's all around us. You can't feel it. Smell it. Or taste it.
But it's there all the same. And if you look close enough, you can see all the amazing and wondrous things it does.
It not only powers our cities and towns.
And all the high-tech things we love.
It gives us the power to invent.
To explore.
To discover.
To create advanced technologies.
This invisible force creates jobs out of thin air.
It adds billions to our economy.
It's on even when we're not.
And stays on no matter what Mother Nature throws at it.
This invisible force takes us to the outer reaches of outer space.
And to the very depths of our oceans.
It brings us together. And it makes us better.
And most importantly, it has the power to do all this in our lifetime while barely leaving a trace.
Some people might say it's kind of unbelievable.
They wonder, what is this new power that does all these extraordinary things?

Seeing the Light on Nuclear Energy

If you think that there is plenty of electricity, that the air is clean enough and that nuclear power is a just one among many options for meeting human needs, then you are probably over-focused on the United States or Western Europe. Even then, you’d be wrong.

That’s the idea at the heart of a new book, “Seeing the Light: The Case for Nuclear Power in the 21st Century,” by Scott L. Montgomery, a geoscientist and energy expert, and Thomas Graham Jr., a retired ambassador and arms control expert.


Billions of people live in energy poverty, they write, and even those who don’t, those who live in places where there is always an electric outlet or a light switch handy, we need to unmake the last 200 years of energy history, and move to non-carbon sources. Energy is integral to our lives but the authors cite a World Health Organization estimate that more than 6.5 million people die each year from air pollution.  In addition, they say, the global climate is heading for ruinous instability. E…