Skip to main content

Princeton’s Stabilization Wedges

From one look at how the world could work to constrain greenhouse gases over the long-term, look no further then Princeton University’s Carbon Mitigation Initiative. Instead of falling back on the idea of the one silver bullet to reduce GHGs, two professors, Robert Socolow, and Stephen Pacala, have broken the task into seven wedges.

Here's a more complete explanation from ScienceMag (subscription required):

The Stabilization Triangle

We idealize the 50-year emissions reductions as a perfect triangle in Fig. 1B. Stabilization is represented by a "flat" trajectory of fossil fuel emissions at 7 GtC/year, and business as usual is represented by a straight-line "ramp" trajectory rising to 14 GtC/year in 2054. The "stabilization triangle," located between the flat trajectory and BAU, removes exactly one-third of BAU emissions.

To keep the focus on technologies that have the potential to produce a material difference by 2054, we divide the stabilization triangle into seven equal "wedges." A wedge represents an activity that reduces emissions to the atmosphere that starts at zero today and increases linearly until it accounts for 1 GtC/year of reduced carbon emissions in 50 years. It thus represents a cumulative total of 25 GtC of reduced emissions over 50 years. In this paper, to "solve the carbon and climate problem over the next half-century" means to deploy the technologies and/or lifestyle changes necessary to fill all seven wedges of the stabilization triangle.

So what are the wedges? Check the table below:And low and behold. What’s Option 9?....Nuclear Fission.
Option 9: Nuclear fission. On the basis of the Option 5 estimates, a wedge of nuclear electricity would displace 700 GW of efficient baseload coal capacity in 2054. This would require 700 GW of nuclear power with the same 90% capacity factor assumed for the coal plants, or about twice the nuclear capacity currently deployed. The global pace of nuclear power plant construction from 1975 to 1990 would yield a wedge, if it continued for 50 years. Substantial expansion in nuclear power requires restoration of public confidence in safety and waste disposal, and international security agreements governing uranium enrichment and plutonium recycling.
Did you read that? “The global pace of nuclear power plant construction from 1975 to 1990 would yield a wedge, if it continued for 50 years.” Meaning we’ve done it before and we can do it again.

Each time I read their ideas I get pumped to go out and promote these solutions. I want everyone from all industries (renewables, fossils, nuclear, tree huggers, etc.) to get together and focus on their contribution for reducing carbon.

Back in the real world though, that thought becomes more a pipe dream than a reality. What’s worse, a former NRC commissioner says nuclear can’t scale to the task while all other options can. I wonder if he has studied how much renewable capacity it takes to fill a wedge. According to the table above, it would take 50 times the current capacity of wind, 700 times for PV and 100 times for biomass. And only three times the current capacity for nuclear. Hmmm. I wonder which is more realistic. I also wonder how many people know that nuclear avoids about half a wedge in the world right now.

If anyone gets anything out of this concept it should be that not one option is going to solve our climate change situation. Also, if you hear someone saying that renewables or nuclear or sequestration are going to solve climate change by themselves, then I suggest you quit listening.

For other bloggers’ takes on the Wedge Concept, check out We Support Lee and A Musing Environment. Also don’t forget to review Princeton’s wedge game.

Comments

Joffan said…
Several of these wedges make no sense to me.

Wedge 4: Produce twice today's coal power output at 60% instead of 40% efficiency (compared with 32% today).
So what this is (I think) saying is that the business-as-usual scenario envisages at least twice as much coal power as today, and we can save a wedge by increasing the efficiency compared to day's mix which is mostly 40% efficient. However it doesn't decrease the amount of CO2 compared to today!! This just allows the electricity generation to (almost) triple whilst only doubling the coal used.

7. Capture CO2 at H2 plant.
This allows a wedge from producing 6-12 times as H2 as today, which is assumed to be required somehow... I think this wedge should be about transport-use HCs displaced, not CO2 captured.

8. Capture carbon at coal-to-synfuels plant.
I really don't understand this one, surely that synfuel is going to be used in transport and generate just as much CO2 as today?


And given the incredible ambition of some of the other options, I'm not sure why nuclear is restricted to just one wedge... to be similarly ambitious, nuclear could take 3 wedges:

9A, B, C: Generate electricity equivalent to 2006 total usage from nuclear power.

And the key thing to notice is: even then, there's so much more to do.
Rod Adams said…
Eric:

What if we built nuclear plants at the US pace from 1963-1973 but extended that to the rest of the world?

If I remember correctly, those 10 years were the Great Bandwagon Market here and we started a huge number of projects, many of which are still operating today.

Rod
Anonymous said…
Sokolow's numbers clearly don't represent any kind of limit to what could be achieved in terms of new nuclear build, if the economics stack up compared to other non-emitting sources.

If we look at Rod's timeline, if we consider 1973, the US's real GDP is roughly double what it was then. So, even assuming that real construction costs are the same as then, and that the same fraction of the economy was devoted to building nuclear plants as was then, the USA should be able to build roughly double the amount of plants constructed in that period.

During World War II, the USA went from constructing about 3000 aircraft per year in 1939 to constructing 100,000 much more sophisticated aircraft per year in 1944.

By comparison, the task of switching from new-build coal to new-build nuclear, and an accelerated schedule of replacing old coal-fired power, hardly represents a challenge at all.

Popular posts from this blog

Fluor Invests in NuScale

You know, it’s kind of sad that no one is willing to invest in nuclear energy anymore. Wait, what? NuScale Power celebrated the news of its company-saving $30 million investment from Fluor Corp. Thursday morning with a press conference in Washington, D.C. Fluor is a design, engineering and construction company involved with some 20 plants in the 70s and 80s, but it has not held interest in a nuclear energy company until now. Fluor, which has deep roots in the nuclear industry, is betting big on small-scale nuclear energy with its NuScale investment. "It's become a serious contender in the last decade or so," John Hopkins, [Fluor’s group president in charge of new ventures], said. And that brings us to NuScale, which had run into some dark days – maybe not as dark as, say, Solyndra, but dire enough : Earlier this year, the Securities Exchange Commission filed an action against NuScale's lead investor, The Michael Kenwood Group. The firm "misap

An Ohio School Board Is Working to Save Nuclear Plants

Ohio faces a decision soon about its two nuclear reactors, Davis-Besse and Perry, and on Wednesday, neighbors of one of those plants issued a cry for help. The reactors’ problem is that the price of electricity they sell on the high-voltage grid is depressed, mostly because of a surplus of natural gas. And the reactors do not get any revenue for the other benefits they provide. Some of those benefits are regional – emissions-free electricity, reliability with months of fuel on-site, and diversity in case of problems or price spikes with gas or coal, state and federal payroll taxes, and national economic stimulus as the plants buy fuel, supplies and services. Some of the benefits are highly localized, including employment and property taxes. One locality is already feeling the pinch: Oak Harbor on Lake Erie, home to Davis-Besse. The town has a middle school in a building that is 106 years old, and an elementary school from the 1950s, and on May 2 was scheduled to have a referendu

Wednesday Update

From NEI’s Japan micro-site: NRC, Industry Concur on Many Post-Fukushima Actions Industry/Regulatory/Political Issues • There is a “great deal of alignment” between the U.S. Nuclear Regulatory Commission and the industry on initial steps to take at America’s nuclear energy facilities in response to the nuclear accident in Japan, Charles Pardee, the chief operating officer of Exelon Generation Co., said at an agency briefing today. The briefing gave stakeholders an opportunity to discuss staff recommendations for near-term actions the agency may take at U.S. facilities. PowerPoint slides from the meeting are on the NRC website. • The International Atomic Energy Agency board has approved a plan that calls for inspectors to evaluate reactor safety at nuclear energy facilities every three years. Governments may opt out of having their country’s facilities inspected. Also approved were plans to maintain a rapid response team of experts ready to assist facility operators recoverin