Skip to main content

Cool Stuff for Nuclear Nerds

Since I'm not doing engineering work on a day-to-day basis anymore, sometimes I don't hear about what kind of cool research is going on. For instance, at MIT engineers are doing some fascinating work to improve the performance of PWRs.

First, they are playing around with fuel pellet design.
They changed the shape of the fuel from solid cylinders to hollow tubes. This added surface area that allows water to flow inside and outside the pellets, increasing heat transfer. The new fuel turned out even better than Hejzlar dared hope. It proved to be easy to manufacture and capable of boosting the plant power output of PWRs by 50 percent.
They are also looking at improving the overall efficiency of the plant. Some of you may remember my tongue-in-cheek suggestion about improving on the efficiency of the thermodynamic cycle in a post last month.

Well, color me red and call me jolly--that's exactly what they are trying to do!
[Buongiorno's] laboratory works on nanofluids - base fluids such as water interspersed with tiny particles of oxides and metals only billionths of a meter in diameter. Buongiorno's nano-spiked water, transparent but somewhat murky, can remove up to two times more heat than ordinary water, making it an ideal substance for nuclear plants.
Gosh. It almost makes me want to go back to MIT, lock myself in a lab for 16 hours a day and get in on some of this research...Ok, those of you that know me are probably breaking out in gales of laughter, but it IS exciting, isn't it?

Technorati tags: , , , , , ,

Comments

Popular posts from this blog

Missing the Point about Pennsylvania’s Nuclear Plants

A group that includes oil and gas companies in Pennsylvania released a study on Monday that argues that twenty years ago, planners underestimated the value of nuclear plants in the electricity market. According to the group, that means the state should now let the plants close.

Huh?

The question confronting the state now isn’t what the companies that owned the reactors at the time of de-regulation got or didn’t get. It’s not a question of whether they were profitable in the '80s, '90s and '00s. It’s about now. Business works by looking at the present and making projections about the future.

Is losing the nuclear plants what’s best for the state going forward?

Pennsylvania needs clean air. It needs jobs. And it needs protection against over-reliance on a single fuel source.


What the reactors need is recognition of all the value they provide. The electricity market is depressed, and if electricity is treated as a simple commodity, with no regard for its benefit to clean air o…

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

A Billion Miles Under Nuclear Energy (Updated)

And the winner is…Cassini-Huygens, in triple overtime.

The spaceship conceived in 1982 and launched fifteen years later, will crash into Saturn on September 15, after a mission of 19 years and 355 days, powered by the audacity and technical prowess of scientists and engineers from 17 different countries, and 72 pounds of plutonium.

The mission was so successful that it was extended three times; it was intended to last only until 2008.

Since April, the ship has been continuing to orbit Saturn, swinging through the 1,500-mile gap between the planet and its rings, an area not previously explored. This is a good maneuver for a spaceship nearing the end of its mission, since colliding with a rock could end things early.

Cassini will dive a little deeper and plunge toward Saturn’s surface, where it will transmit data until it burns up in the planet’s atmosphere. The radio signal will arrive here early Friday morning, Eastern time. A NASA video explains.

In the years since Cassini has launc…