Skip to main content

Major Modifications and Upgrades to U.S. Boiling Water Reactors

NEI has a new fact sheet available describing how US BWRs have improved their designs to enhance safety over the past 30 years.

major_mod_usbwr 

Here are some good nuggets from the fact sheet:

As shown above, major reactor design modifications have resulted from safety studies and analyses of past events by the NRC and the nuclear power industry. For example, as a result of the 1979 accident at Three Mile Island, the industry learned valuable lessons, including the importance of control room process and design. In 1980, access to control rooms was limited and safety alarms were given greater prominence.

Also in the early 1980s, the part of the BWR containment system known as a torus – a large, circular suppression pool sitting below the reactor – was reinforced to better dissipate pressure and strengthened to accommodate additional force. After a fire at TVA’s Browns Ferry nuclear plant, fire protection was enhanced and fire safety systems were physically separated.

The fourth modification – adding fortified vents to the containment building – was designed to prevent hydrogen accumulation inside the containment building. U.S. boiling water reactors have implemented this modification. This strengthening allows the plant to vent hydrogen from the primary containment structure via high pressure piping, precluding over‐pressurization of containment and preventing hydrogen explosions.

In 1988, enhanced battery capability was added and other emergency power upgrades were made to address the possibility of a full blackout at nuclear facilities. This gives operators more time to start backup diesel generators or restore offsite power to safety systems at the facility. In 2002, after the September 11 terrorist attacks led to an extensive review of accident scenarios beyond plant design standards, additional blackout mitigation capabilities were added as well as portable water pumps that could operate without electric power.

In addition to the redundant electrical and cooling water pumps, large backup diesel generators and other emergency electrical equipment at American plants are seismically protected and have a greater margin of safety protection from flooding, whether from hurricanes, tsunamis or river flooding. Depending on the site, flooding protection for diesel generators and emergency equipment is achieved in a variety of ways, such as watertight buildings, watertight doors and placement at high elevations. Further, whereas above ground diesel tanks at Fukushima were damaged by the tsunami, they are protected at U.S. plants by being placed underground or at higher elevations safe from floods.

In summary, U.S. nuclear power plants have significant safety measures and have undergone design modifications to protect against loss of electrical power, pressure buildup within containment and hydrogen buildup. With these added protections in place, America’s nuclear plants are well prepared to maintain safety even in the face of severe natural events.

Stop by to check out the rest of the four page document (pdf).

Comments

Martin Burkle said…
Better design does make a difference.
Reactor 6 is a later and better design than Reactors 1 through 5. The key difference is the air tight building around the emergency generator which saved the generation from destruction. Reactor 5, which is of the old design, lost it's generator but a line was run from reactor 6 to 5 saving reactor 5 from the fate of rectors 1 to 4. We know the same wave hit reactor 5 and reactor 6, but the extra protection saved reactor 6's emergency generator.
Japans root problem was not upgrading safety features of the older plants.
Better design was the difference.
crf said…
This shows, I think, the need for more international cooperation in implementing and auditing safety improvements in nuclear plants.

The industry cannot afford not to do this, because, as fukushima shows, one particular accident anywhere will affect the public's view of all nuclear everywhere.
crf said…
One obvious thing to look at improving safety is the spent fuel ponds. They are a source of anxiety at fukushima, if not a real danger.

1) A way of getting water to fuel ponds from the plant's exterior from a normal fire hose and pump truck.

2) A light containment around the fuel pond, which could roll over the top of it, with a filtered vent.

3) Cameras with emergency battery backup, to look at the ponds.

4) Hydrogen management.
Martin Burkle said…
Addition to crf's thoughts.
Putting a time limit like five years on the time spent fuel can stay in a pool seems like a reasonable rule. Moving the spent fuel to cask storage is something we know how to do. The cask uses passive air cooling that works even if all power is lost. Why would this not be a good rule?

Popular posts from this blog

Fluor Invests in NuScale

You know, it’s kind of sad that no one is willing to invest in nuclear energy anymore. Wait, what? NuScale Power celebrated the news of its company-saving $30 million investment from Fluor Corp. Thursday morning with a press conference in Washington, D.C. Fluor is a design, engineering and construction company involved with some 20 plants in the 70s and 80s, but it has not held interest in a nuclear energy company until now. Fluor, which has deep roots in the nuclear industry, is betting big on small-scale nuclear energy with its NuScale investment. "It's become a serious contender in the last decade or so," John Hopkins, [Fluor’s group president in charge of new ventures], said. And that brings us to NuScale, which had run into some dark days – maybe not as dark as, say, Solyndra, but dire enough : Earlier this year, the Securities Exchange Commission filed an action against NuScale's lead investor, The Michael Kenwood Group. The firm "misap

An Ohio School Board Is Working to Save Nuclear Plants

Ohio faces a decision soon about its two nuclear reactors, Davis-Besse and Perry, and on Wednesday, neighbors of one of those plants issued a cry for help. The reactors’ problem is that the price of electricity they sell on the high-voltage grid is depressed, mostly because of a surplus of natural gas. And the reactors do not get any revenue for the other benefits they provide. Some of those benefits are regional – emissions-free electricity, reliability with months of fuel on-site, and diversity in case of problems or price spikes with gas or coal, state and federal payroll taxes, and national economic stimulus as the plants buy fuel, supplies and services. Some of the benefits are highly localized, including employment and property taxes. One locality is already feeling the pinch: Oak Harbor on Lake Erie, home to Davis-Besse. The town has a middle school in a building that is 106 years old, and an elementary school from the 1950s, and on May 2 was scheduled to have a referendu

Wednesday Update

From NEI’s Japan micro-site: NRC, Industry Concur on Many Post-Fukushima Actions Industry/Regulatory/Political Issues • There is a “great deal of alignment” between the U.S. Nuclear Regulatory Commission and the industry on initial steps to take at America’s nuclear energy facilities in response to the nuclear accident in Japan, Charles Pardee, the chief operating officer of Exelon Generation Co., said at an agency briefing today. The briefing gave stakeholders an opportunity to discuss staff recommendations for near-term actions the agency may take at U.S. facilities. PowerPoint slides from the meeting are on the NRC website. • The International Atomic Energy Agency board has approved a plan that calls for inspectors to evaluate reactor safety at nuclear energy facilities every three years. Governments may opt out of having their country’s facilities inspected. Also approved were plans to maintain a rapid response team of experts ready to assist facility operators recoverin